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In many service encounters front-line workers (often referred to as gatekeepers) have the discretion to attempt

to resolve a customer request or to transfer the customer to an expert service provider. Motivated by an

incentive redesign at a call center of a mid-size US-based bank, we formulate and solve an analytical model

of the gatekeeper’s transfer response to different incentive schemes and to different congestion levels. We

then test several model predictions experimentally. Our experiments show that human behavior matches the

predictions qualitatively, but not always in magnitude. Specifically, transfer rates are disproportionately low

in the presence of monetary penalties for transferring, even after controlling for the economic (dis)incentive

to transfer, suggesting an overreaction to transfer cost. In contrast, the transfer response to congestion

information shows no systematic bias. Taken together, these results advance our understanding of cognitive

capabilities and rationality limits on human server behavior in queueing systems.
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1. Introduction

The delivery of services often consists of a complex series of service encounters, during which the

customer may go through a number of steps, interacting with several specialized workers (Gans

et al. 2003, Sampson and Froehle 2006, Heineke and Davis 2007). In many of these encounters

front-line workers (often referred to as gatekeepers) have the discretion to attempt to resolve a

customer request single-handedly, or to transfer the customer to an expert. This attempt-or-transfer
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decision is at the core of many customer/worker interactions in call centers, ticket-based work in

Information Technology (IT), patient screenings in health care, and in other settings where the

solution to the problem cannot be identified prior to the encounter.

Transfers can have important service quality and cost implications. On the one hand, trans-

fers may detract from customer satisfaction, and may increase staffing costs. On the other hand,

transfers may be necessary for more complicated requests that cannot be solved within a reason-

able timeframe, for example, due to a lack of technical proficiency of the gatekeeper. As more

requests accumulate in the queue, waiting to be resolved, failure to make timely transfers can

further exacerbate congestion, extending the time spent in the system.

Consider the case of the ABC (name redacted) Bank call center, which provides customer service

support to approximately 3 million consumers and small business owners. In late 2017 the call

center management team decided to re-examine several service performance indicators, including

discretionary transfers, i.e., transfers that call center agents initiate after determining that they

have spent sufficient time (or expended sufficient effort) working on a request. As part of their

investigation, the management team discovered what they perceived as high variation in transfer

rates. For example, for Online Banking access requests, individual rates ranged between 3.8% and

36.9% – a range wide enough to suggest that agents could change their transfer behavior in response

to an appropriately-chosen incentive system. (See Hathaway et al. (2021) for more details of this

field study.)

On 4/1/2018, the management team implemented such an incentive system (referred to inter-

nally as the new “agent scorecard”). The scorecard was used to measure agents’ performance and

link it to their monetary bonuses and shift assignments. Among other components (mainly related

to customer satisfaction), the scorecard included a productivity score, with transfer decisions con-

tributing substantially to it. In essence, the management team designed this productivity score to

encourage agents to quickly transfer issues requiring above-average service time, and discourage

them from transferring issues requiring short service time.
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Figure 1 Transfer Rates Before and After the Scorecard Rollout
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Note. Transfer rate percentiles for the 201 (234) agents who handled at least 100 Online Banking access calls six

(twelve) months prior to the scorecard change, and the 216 (266) agents who handled at least 100 Online Banking

access calls six (twelve) months following the scorecard change.

To explore the effects of the new scorecard on transfer behavior we examined agent transfer rates

(the share of incoming calls that an agent transfers) for Online Banking access requests before and

after its implementation. Figure 1 plots the transfer rate percentiles for agents who handled at least

100 Online Banking access calls prior to the scorecard rollout (solid lines), and agents who handled

at least 100 Online Banking access calls following the scorecard rollout (dashed lines). With the

exception of the transfer rates above the 85th percentile, transfer rates dropped substantially. For

example, the median transfer rate dropped from 13.6% (13.9%) to 8.9% (9.8%) in the six (twelve)

months following the scorecard rollout.

The ABC bank call center case demonstrates that transfers can be an important concern for

managers of service systems and that they are willing to explore ways to align transfer behavior

with what they perceive as appropriate. However, designing an incentive system that effectively

regulates transfers in a queueing system requires a thorough understanding of gatekeeper responses

to different components of the incentive system under different congestion levels, and potential

biases affecting those responses. Do gatekeepers transfer more when the time for resolving a request
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goes up? Are they able to incorporate into their behavior a reward for solving a customer request

and a cost for transferring? Finally, are they able to combine congestion information with incentive

and resolution time information to arrive at the right transfer decision?

In this paper we study these questions using analytical modeling and experiments. We use

modeling to develop benchmarks for optimal gatekeeper transfer behavior under different incentive

systems and congestion levels. We then use experiments to test model predictions in a controlled

setting. Both the model and the experiment design are inspired by our interactions with the ABC

bank managers and call center agents, and by the insights from the data they shared with us. Thus,

our approach draws on the distinct strengths of field and lab data to develop queueing models that

incorporate human behavior (Schultz et al. 1998, Ülkü et al. 2019).

We model the work shift of a gatekeeper as a series of customer requests. Each request may

require several attempts to be resolved, making the exact number of attempts until successful

resolution uncertain. Within a request, each attempt may result in successful resolution, but also

depletes the time budget (a proxy for shift duration). Further, the gatekeeper receives a reward for

each successfully resolved request and may be penalized with a cost for transferring. Hence, each

request resembles a stopping problem, where the gatekeeper faces a trade-off between immediate

losses due to a transfer and future losses due to fewer requests handled. We obtain the gatekeeper’s

optimal decision policy by solving the above finite-horizon problem using dynamic programming.

To develop testable hypotheses regarding human gatekeeper behavior, we embed the dynamic

program solutions into a random utility framework, which allows the possibility of random errors,

particularly for decisions with small payoff consequences. We then test these hypotheses in two

experiments. In the first experiment, participants solve the problem under one of two different

incentive schemes: one that rewards each resolved request with a fixed bonus, and one that addi-

tionally imposes a transfer cost. In the second experiment, participants solve the problem in a

system with a variable queue state (i.e., sometimes empty and sometimes nonempty).

Our experimental design and econometric approach carefully control for the payoff difference

between the optimal and non-optimal actions across treatment conditions. The higher the payoff
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difference, the more subjects benefit from being able to identify the correct transfer decision;

thus, holding the payoff difference constant helps separate behaviors caused by the strength of

the incentives from behaviors caused by the structure of the incentives, exposing robust biases

in decision-making (Harrison 1989, Smith and Walker 1993). To be able to use this approach in

a dynamic setting, we carefully tailor terminal conditions such that our model and experiments

have a finite horizon and a stationary optimal policy. In addition to providing a clean benchmark

for hypothesis tests, stationarity and finiteness remove the need for time discounting, facilitating

participant comprehension and convergence to stable strategies.

Our experimental results are as follows: 1) Consistent with our hypotheses, transfer rates are

lower when a transfer cost is present. However, contrary to our hypotheses, transfer rates in the

presence of a cost are lower even after controlling for the incentive differences between the pure

bonus and the bonus+cost incentive regimes. That is, gatekeepers appear to overreact to cost by dis-

proportionately reducing transfer rates. 2) Consistent with our hypotheses, transfer rates increase

when the queue is nonempty. However, the queue state does not lead to systematic over/under

transferring, suggesting no systematic biases in response to varying congestion levels.

Taken together, these results advance our understanding of cognitive capabilities and rationality

limits on human server behavior in queueing systems. With simple bonus-based systems, transfer

decisions are noisy but exhibit no bias towards or away from transferring, even with variable

congestion. In contrast, with bonus+cost systems, decisions are biased away from transferring. The

implications of these results in practice depend on the desirability of transfers by the customers

and by the organization operating the gatekeeper system.

2. Literature

Our investigation draws on and contributes to two streams of literature: (1) gatekeeper literature

in service and healthcare operations, and (2) work on queueing systems with human servers.

Gatekeepers The term gatekeeper has been used in two types of operational environments.

One is a system where the gatekeeper’s job is to sort people or tasks based on their characteristics,
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e.g., a triage nurse screening patients in an emergency room. The other is a system in which there

is an overlap between the tasks completed by the gatekeeper and by an expert, with the gatekeeper

deciding to either handle each task single-handedly or transfer it to the expert. Our investigation

focuses on the latter system.

Gatekeeper-expert systems have been first studied analytically using the principal-agent frame-

work (Shumsky and Pinker 2003, Hasija et al. 2005, Lee et al. 2012). Recent empirical studies have

examined the effects of congestion on gatekeeper decisions in health care systems. Freeman et al.

(2017) show that workload (induced by congestion) affects midwives’ referral (transfer) behavior

to a physician, which creates variation in the patients’ quality of care. Batt and Terwiesch (2017)

show that under high congestion, nurses (gatekeepers) take over a portion of the physician’s work

to reduce waiting times. We contribute to this stream by conducting the first (to our knowledge)

experimental test of an analytical model of transfer decisions.

Queueing Systems with Human Servers Although some early work in queueing theory has

considered discretionary server decisions (for example, see Edie 1954), there is a renewed interest

in research that explicitly incorporates server behavior. Schultz et al. (1998) show experimentally

that workers change their service speed in response to the amount of work to be done. Other studies

in this vein include analytical studies of servers with discretionary speed (George and Harrison

2001), quality (Hopp et al. 2007), speed and quality (Zhan and Ward 2019), and field studies of

servers with discretionary speed (Oliva and Sterman 2001, Berry Jaeker and Tucker 2017), and

task selection (KC et al. 2020, Ibanez et al. 2018). Finally, an integrative review of the literature

on the effects of load on service times is offered in Delasay et al. (2019).

While the extant literature documents a variety of settings in which servers have discretion over

service provision, few studies examine the internal decision trade-offs facing the server. Indeed, a

recent review of the behavioral queueing literature (Allon and Kremer 2018) suggests that “[...] most

of the empirical evidence comes from field settings, which leaves substantial room for deeper inves-

tigations of individual-level server behavior under controlled laboratory conditions (page 357)”.
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Two recent exceptions are found in Shunko et al. (2018) and Rosokha and Wei (2020), who study

effort provision in multi-server systems.

Finally, we represent the gatekeeper’s work shift as a series of stopping problems, where each

transfer is equivalent to a stop. Hence, our work is related to optimal-stopping experiments

(Rapoport and Tversky 1970, Cox and Oaxaca 1989, Seale and Rapoport 1997, Bearden et al. 2006,

Long et al. 2019, Kremer and de Vericourt 2020), to sequential allocation experiments (Bearden

et al. 2008, Leider and Şahin 2014), and more generally to dynamic programming experiments

(Hey and Dardanoni 1998, Noussair and Matheny 2000, and references on page 5 of Duffy (2016)),

as well as other experiments that use terminal conditions to induce stationarity (Ball and Holt

1998, Noussair et al. 2001, Kirchler et al. 2012). We note that server decisions in our queueing

context have both time and payoff implications resulting in decision cycles of varying length, which

significantly complicates the construction of terminal conditions (see Hathaway et al. 2021 for

details).

3. Model of Transfer Behavior

To provide optimality benchmarks for transfer decision-making we will next develop a discrete-

time, finite-horizon model of a single gatekeeper who makes transfer decisions in response to an

incentive system over a series of service requests received within a work shift. We first describe the

gatekeeper’s transfer decision problem and our approach for deriving properties of the gatekeeper’s

optimal policy. We then focus on a basic (two-attempt) version of this problem that retains the key

decision trade-offs, and that is used in our subsequent laboratory experiments. We then embed the

model into a random utility framework to account for random errors of human decision-makers.

This section has been abridged. See Hathaway et al. (2021) for a longer version appropriate for

readers interested in the model analysis, proofs, and extensions.

3.1. The Gatekeeper’s Decision Problem

We model the gatekeeper’s work shift as a sequence of discrete periods indexed by t ∈ {1, · · · , T},

where T is the duration of the work shift. We model congestion by positing that at time t there
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is a stationary probability, q, that there is at least one service request waiting in queue to be

handled, and a complementary probability, 1− q, that the queue is empty. Consequently, at time

t, if the gatekeeper is idle or becomes available and the queue is nonempty, then the gatekeeper

immediately begins handling a request; otherwise, the gatekeeper is idle until at least period t+ 1.

Each request is characterized by an ordered list of potential solutions s= {1,2, ..., S}, by proba-

bilities, ps, that solution s succeeds in resolving the request, and by the handling times, τs, that the

gatekeeper expends to attempt each potential solution. The gatekeeper knows ex ante that one of

the solutions is guaranteed to resolve the issue, such that
S∑

s=1

ps = 1. The choice to guarantee that

one of the attempts will resolve the request was made to simplify the problem for experimental

participants, but is not required for our analytical results. While the gatekeeper does not know

whether potential solution s will resolve the request, the gatekeeper knows the probability of each

potential solution resolving the request (ps), and its respective handling time (τs).

At the beginning of each encounter, the gatekeeper attempts the first potential solution (s= 1),

expending τ1 time units. If the attempt resolves the request, the gatekeeper receives a reward

r. If not, then the gatekeeper chooses whether to attempt the second potential solution (s = 2),

expending an additional τ2 time units, or transfer the request at cost c. This attempt-or-transfer

decision is repeated until the request is resolved and the gatekeeper receives the reward, or the

request is transferred and the gatekeeper incurs the cost. Upon resolving or transferring a service

request, the gatekeeper begins handling the next request, immediately if the queue is nonempty,

or as soon as one becomes available if the queue is empty. (The gatekeeper knows the state of the

queue when making transfer decisions).

The scope of the studied problem is summarized in Figure 2. We focus on a single gatekeeper

whose transfer decisions are informed by current congestion. We model the queue as having a

binary state (empty/nonempty) to make the problem more amenable to a laboratory study of

behavioral responses to congestion. Further, the stationary queue-state distribution characterized

by the fixed, exogenous q parameter means that the gatekeeper is not concerned with how current
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Figure 2 Scope of Study

Queue Queue
Gatekeeper

Expert

Scope of model and experiments

Expert

Gatekeeper

transfer decisions impact future congestion. This is consistent with large-scale systems such as call

centers (including the ABC Bank call center described in §1), technical support, and other settings

in which individual server decisions have a negligible impact on load (See for example Garnett

et al. 2002, Dong et al. 2015, for steady-state analyses of such large-scale service systems). Lastly,

the sequential nature of the resolution process is reflective of more standardized service processes

for which the problem categories and the attendant resolution procedures are mapped out and

reasonably well understood by the organization (τs and ps are fixed and known). In contrast, smaller

service systems, systems in which gatekeepers may need to collaborate (with other gatekeepers, or

with experts) to resolve a problem, or systems in which problems are not easily categorized, would

be excluded.

3.2. Two-Attempt Problem

In Hathaway et al. (2021) we formulate the above problem as a finite-horizon dynamic program.

Using inductive arguments we show the following for a general S-attempt problem: 1) for any given

period, if it is optimal for the gatekeeper to transfer when the queue is empty, then it is optimal to

transfer when it is nonempty; and that 2) under an intuitively appealing set of terminal conditions

a stationary policy is optimal. The optimality of a stationary policy in conjunction with a finite

horizon and intuitive terminal conditions removes the need for discounting or other time-based

adjustments to the decision. This significantly simplifies the decision situation and makes the model

more amenable to experimentation with human subjects.
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Our experimental investigation will focus on the two-attempt version of the gatekeeper’s deci-

sion problem (S = 2). While muting certain aspects of the decision, the two-attempt version still

captures the key determinants of the transfer decision, specifically the effects of resolution times,

incentive structures, and current congestion levels on transfer behavior.

When S = 2, a direct analysis yields an analytic expression for the optimal expected profit per

unit time. Consider the gatekeeper’s problem after attempting potential solution 1. If the problem

has been resolved, the gatekeeper has no decision to make: if the queue is empty, the gatekeeper

waits until the next request arrives; otherwise, the queue is nonempty and the gatekeeper begins

handling the next request. If potential solution 1 does not resolve the request, then the gatekeeper

must decide whether to attempt potential solution 2 or transfer and move on to the next request.

This decision is simplified by the stationarity of the optimal policy and can thus be made through

a direct comparison of the expressions corresponding to each stationary policy. Specifically, the

optimal policy is one of three admissible policies: 1) “Always Transfer”, i.e., transfer irrespective of

the queue state, 2) “Always Continue”, i.e., attempt potential solution 2 irrespective of the queue

state, and 3) “Transfer When Nonempty”, i.e., only transfer when the queue is nonempty. Note

that the fourth possible stationary policy in which the gatekeeper only transfers when the queue

is empty is dominated by either “Always Transfer” or “Always Continue”.

We will denote by θ = {r, c, τ1, τ2, p1, p2, q} the vector of model parameters, and by R(·, ·,θ) the

expected profit per unit time given θ, where the first (second) argument is the transfer decision

when the queue is empty (nonempty). We use “1” to denote “Transfer” and “2” to denote “Con-

tinue”. Thus, R(1,1,θ) denotes the expected profit per unit time of following the “Always Transfer”

policy, R(2,2,θ) denotes that of the “Always Continue” policy, and R(2,1,θ) denotes that of the

“Transfer When Nonempty” policy. Solving the recursions of the dynamic program under each of

these three policies yields the following result:

Proposition 1. Under terminal conditions that lead to a stationary threshold policy being optimal,

when S = 2, the optimal profit per unit time is given by the maximum of R(1,1,θ), R(2,2,θ), and

R(2,1,θ), where
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R(1,1,θ) =
p1r− (1− p1)c
τ1 + (1− q)/q

, R(2,2,θ) =
r

τ1 + (1− p1)τ2 + (1− q)/q
and

R(2,1,θ) =
r(1− q+ p1q) − (1− p1)qc

τ1 + (1− p1)(1− q)τ2 + [1− q(1− p1)](1− q)/q
.

While the formal proof of Proposition 1, and the derivation of the terminal conditions are presented

in Hathaway et al. (2021), we note that the R(·, ·,θ) expressions have a more intuitive interpre-

tation. Specifically, the numerator of each expression represents the expected reward per “cycle”,

and the denominator represents the expected “cycle time”. Therefore, the R(·, ·,θ) expressions can

be interpreted as the “expected profits per unit time” resulting from each stationary policy.

3.3. Random Utility Model

Proposition 1 states that the optimal transfer decision depends on the relative returns from trans-

ferring (continuing), which can be evaluated by correctly calculating the rewards per unit time.

Given the random, dynamic nature of the problem, we can reasonably expect that humans will

deviate from the optimum at least some of the time. To control for these deviations and expose

potential systematic biases in transfer decision-making we incorporate the relative returns from

transferring into a random utility model (McFadden 1973, Ben-Akiva 1973; see also Hyndman and

Embrey 2018, for the usage of such models in behavioral operations research).

The basic premise of random utility models is that the choice between alternatives depends on

the utility difference between them, and on a random error. When decisions are one-shot, the total

utility of a decision-maker is separable into the utility increments resulting from each decision. But,

when decisions are linked dynamically, as in our model, we need to make an assumption on what

constitutes the utility of a decision alternative. To resolve this we will assume that decision-makers

compare the expected profits per unit time under each stationary policy as derived in Proposition

1. (Alternative specifications are discussed in §6.) Specifically, we use the following ratio to assign

a utility measure to the transfer decision:
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Definition 1. When q= 1, the transfer return π(θ) of a condition θ is given by

π(θ) =
R(1,1,θ)

R(2,2,θ)
− 1 (1)

In other words, the transfer return π(θ) measures the percentage gain (loss) in payoff per unit time

incurred by transferring over continuing. The transfer return contains the following information.

First, its sign indicates the optimal policy: transfer return is positive (negative) when transferring

(continuing) is optimal. Second, its magnitude measures the gains (losses) of choosing the optimal

over the non-optimal policy. (The construction of π(θ) for the q < 1 case is deferred to §5.)

Using the transfer return measure (eq. 1), we can formulate a random utility model, which will

allow us to expose features of the decision environment that systematically affect behavior towards

or away from transferring. Specifically, we will examine the effects on transfer decisions of the

presence of a transfer cost (Experiment 1), and of queue state (Experiment 2).

4. Experiment 1: Different Incentive Systems

The remainder of this paper uses the two-attempt model as a benchmark for studying gatekeeper

transfer decisions in controlled behavioral experiments. In Experiment 1 we set q= 1, and study the

effects of two different incentive systems: one with a transfer cost, and one without. In Experiment

2, we set q < 1 and study the effects of variable congestion levels.

4.1. Hypotheses

In Experiment 1 we vary τ2 and/or c while holding the remaining parameters constant. Comparative

statics on R(·, ·,θ) from Proposition 1 in §3.2 reveal that increasing τ2 decreases R(2,2,θ) while

R(1,1,θ) remains constant, which increases the return to transferring. Conversely, increasing c

decreases R(1,1,θ) while R(2,2,θ) remains constant, which increases the return to continuing.

Therefore, increasing τ2 (c) increases (decreases) transfer return (π(θ)), which should then make

decision-makers more (less) likely to transfer, i.e., their transfer rates (the proportion of transferable

issues they transfer) should be higher (lower). Hence:
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H1a: Holding q= 1 and all other parameters constant, transfer rates are increasing in τ2.

H1b: Holding q= 1 and all other parameters constant, transfer rates are decreasing in c.

In addition to examining the behavioral response to a single parameter change (τ2 and c), we

are also interested in the effects on behavior of changing the structure of the incentive system

(specifically the presence of a transfer cost). To do so, we can use our random utility framework,

which suggests that any two conditions with the same transfer return should lead to the same

transfer rates (since the expected utilities are the same under each parameterization). Hence:

H1c: Holding the transfer return constant, the presence of a transfer cost has no effect on transfer

rates.

Put differently, while H1a and H1b state the null that transfer response is qualitatively consistent

with the model, H1c states the null that transfer response is well-calibrated under a system with

and without a transfer cost. Consequently, the null would be rejected if there is a systematic bias

towards or away from transferring in the presence of a transfer cost.

Figure 3 illustrates our approach by overlaying the hypotheses with the six conditions that will

be used in the experiment. In panel a) the optimal policy is “Always Transfer” and the dashed line

represents various combinations of τ2 and c that result in a transfer return of 12.5%. In panel b)

the optimal policy is “Always Continue” and the dashed line represents a transfer return of -12.5%.

According to H1a, going from B25 to B30 (C15 to C20) should increase transfer rates, since transfer

return increases in τ2. According to H1b, going from B30 to C30 (B15 to C15) should decrease

transfer rates, since transfer return decreases in c. Finally, according to H1c, going from B25 to

C30 should have no effect on transfer rates, since transfer return is the same in those conditions.

Similarly, going from B15 to C20 should have only minimal effect on transfer rates. (Condition

C20 features a slightly different transfer return than condition B15; the reason is that we chose all

parameters to be multiples of 5 to facilitate computation for experimental subjects.)
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Figure 3 Experiment 1: Summary of Hypotheses
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Note. Parameters: p1 = p2 = 0.5, r = 100, τ1 = 10. Dashed lines represent transfer return of 12.5% in panel (a) and

-12.5% in panel (b). Points correspond to the six conditions in Table 1.

4.2. Experiment Design

In our experiments, participants work on the two-attempt version of the dynamic program intro-

duced in §3. This means that incoming requests are either resolved on the first attempt (which

takes τ1 time units) or on the second attempt (which takes τ2 time units). Whenever the request

is unresolved after the first attempt, the participant is asked to choose between transferring the

request or continuing to the second attempt. For each resolved request, participants receive r

points, and for each transfer they lose c points. Each round of the experiment continues until the

participant runs out of the allocated T time units. At the end of the experiment the accumulated

point earnings are paid out in US Dollars at the rate of 10 points = 1 cent. Instructions and screen

shots of the experiment are reproduced in Appendix A.

Treatments Experiment 1 treatments and conditions are summarized in Table 1 (also see

Figure 3). All conditions are between-subject. In each condition, participants receive a reward

of r = 100 for each completed request, and each of the two attempts is equally likely to resolve

the request (p1 = p2 = 0.5). However, the treatments vary in the presence of a transfer cost (c):

the Baseline treatment has no transfer cost while the Cost treatment has a transfer cost of 10.

Within each treatment we explore (again, using a between-subjects design) several parametrizations
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Table 1 Summary of Experiment 1 Treatments and Conditions

Treatment/
# Subjects

Parametrization (θ)

Optimal Policy
Transfer

Condition r p1 p2 τ1 τ2 c q Return

Baseline 124

B30 43 100 0.5 0.5 10 30 0 1 Always Transfer 25.0%
B25 41 100 0.5 0.5 10 25 0 1 Always Transfer 12.5%
B15 40 100 0.5 0.5 10 15 0 1 Always Continue -12.5%

Cost 111

C30 34 100 0.5 0.5 10 30 10 1 Always Transfer 12.5%
C20 34 100 0.5 0.5 10 20 10 1 Always Continue -10.0%
C15 43 100 0.5 0.5 10 15 10 1 Always Continue -21.3%

Note: Subject numbers in column 2 exclude 49 participants who failed comprehension tests.

(conditions) by varying τ2 while holding the remaining parameters constant. The specific τ2 values

are chosen to allow pairwise comparisons at similar levels of transfer return, and to provide a

balanced treatment-average magnitude of transfer returns (see right panel of Table 1).

Participant Pool, Comprehension Checks, and Additional Measures The experiment

was programmed in oTree (Chen et al. 2016) and conducted on the Amazon MTurk platform in

February and September 2020. A total of 322 participants were recruited for Experiment 1 and

49 participants were excluded from the data (participants were excluded if they made more than

3 errors in the comprehension test and spent less than 10 seconds per page on the instruction

pages). Upon completion of the experiment, we elicited participants’ risk preferences (separately

in the gain and in the loss domain) using the Eckel and Grossman (2002) measure, to control for

individual differences in the regression analysis.

Time Budget and End of Horizon After completing an unincentivized training round (with

T = 100), participants played two incentivized rounds of the experiment with a time budget of

T = 200. The time budget was chosen such that we could collect at least 6 data points (decisions)

for each participant, regardless of their transfer strategy and treatment. All participants received

an initial endowment of 200 points to prevent the possibility of negative payoffs. Average time to

complete the experiment was 15 minutes; average earnings was $4, including the show-up fee.
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Due to the finite time budget, participants faced end-of-horizon situations in which they were left

with an insufficient number of time units to resolve a new request. To ensure that end-of-horizon

effects did not interact with the participants’ transfer strategy, we adapted the terminal conditions

developed in Hathaway et al. (2021) to the experimental setting. In particular, if at the end of the

time horizon, participants had less than τ1 + τ2 time units remaining, they were compensated for

those remaining time units at a fixed rate. Consistent with the terminal conditions presented in

the proof of Proposition 1, the compensation rate was chosen to be equal to the expected return

from following the optimal strategy indefinitely.

4.3. Experiment Results

Descriptive Statistics Figure 4 shows the distribution of transfer rates in each treatment

and condition of Experiment 1. Each data point in the histograms is a subject average, with 0

indicating that the subject never transferred and 1 indicating that the subject always transferred.

Although the data reveal a wide range of transfer behaviors, the mode in five of the six conditions is

identical to the theoretical optimum, which is either 0 or 1. Further, the mean transfer rates in these

five conditions are significantly different from 0.5 (two-sided t−tests, p < 0.01), providing initial

evidence that participant behavior is directionally consistent with the theoretical optimum. In

contrast, the mean transfer rate in the Cost condition in panel b) is not statistically distinguishable

from 0.5 (p= 0.43), suggesting that participants may have difficulties incorporating a transfer cost

into their decisions.

Figure 4 also reveals that mean transfer rates vary between treatments and between conditions

within each treatment. In particular, mean transfer rates decrease from 0.68 to 0.36 as we vary τ2

in the Baseline treatment and from 0.55 to 0.26 in the Cost treatment. Transfer rates also appear

to be affected by the presence of a transfer cost. Indeed, when τ2 is set to 30 in panel a) and panel

b) (set to 15 in panel e) and panel f)), the mean transfer rate is 13 (10) points lower under the

Cost treatment relative to Baseline.
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Figure 4 Baseline and Cost Treatments: Transfer Rates
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Comparing conditions with similar transfer return, cost still appears to decrease transfer rates.

Specifically, mean transfer rates are 10 percentage points lower in the Cost treatment with a

transfer return of 12.5% (panel b)) than in the Baseline treatment with the same transfer return

(panel c), and 7 points lower in the Cost treatment with a transfer return of -10.0% (panel d) than

in the Baseline treatment with a comparable transfer return of -12.5% (panel e).

Additional Condition: C35 Our exploratory analysis thus far suggests that transfer rates

drop by 7 to 10 percentage points in the presence of transfer costs, even after holding constant
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the economic incentives to transfer. Before formally testing this effect, we run one additional Cost

condition with τ2 = 35 (labeled C35 ). In the C35 condition, participants faced similar economic

incentives as in condition B30 : both conditions have a similar magnitude of the return measure

(π(θ) = 23.8% and π(θ) = 25%), i.e., a relatively high payoff for following the optimal policy.

A direct comparison of transfer rates in these two conditions again shows a reduction of transfer

rates in the presence of a transfer cost. However, the treatment gap decreases: the mean transfer

rate in C35 is 66%, which is only two percentage points less than in B30. This implies that as

the return for following the optimal policy increases, identifying the correct policy becomes easier,

helping participants find the optimal policy even under more complex incentive systems (such as

our Cost treatment). Further implications of this result will be discussed in §6.

Hypothesis Tests We next test our hypotheses by examining the output of several random

coefficient Logit regressions. As discussed in §3.3, our random utility model is based on decision-

makers maximizing the monetary utility of transferring vs. continuing. The specific form of the

utility of transferring is as follows (the utility of continuing is normalized to 0):

utr
ij (θ) = αi +β ·π(θ) +γ ·xj + εtrij , (2)

where utr
ij (θ) is the utility of transferring received by gatekeeper i working on request j, αi is

gatekeeper i’s individual tendency towards or away from transferring, β is the rationality parameter

that captures the gatekeeper’s response to the transfer return π(θ), xj is the vector of the remaining

characteristics of request j, γ is the vector of the effects of xj, and εtrij is the error term for gatekeeper

i’s jth decision.

The regression output in Table 2 is based on all seven conditions used in Experiment 1 (the

six treatments in Table 1 and the additional condition C35 ). In (1) we test H1a and H1b by

dropping transfer return from the model and regressing transfer decisions directly on τ2 and c.

Consistent with H1a and H1b, increasing τ2 significantly increases transfer rates, while increasing

c significantly reduces transfer rates (both p < 0.01). Further, in (2) we find that the effects persist
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Table 2 Random Logit Regressions: Experiment 1 Treatments (Baseline and Cost)

(1) (2) (3) (4)

τ2 0.150*** 0.143***

(0.025) (0.025)

c -0.150*** -0.141***

(0.037) (0.037)

Transfer Return (π(θ)) 6.417*** 6.133***

(1.093) (1.064)

Cost Treatment -0.787** -0.730**

(0.378) (0.367)

Controls: demographics, quiz errors no yes no yes

risk/loss preferences, time remaining

Observations 3618 3618 3618 3618

Participants 273 273 273 273

Log Likelihood -1572.053 -1559.645 -1572.128 -1559.614

AIC 3152.107 3139.290 3152.255 3139.228

Note. Random effects Logit regression coefficients are reported. Dependent variable is transfer decision (1: transfer, 0: continue).
Intercept term not displayed. Observations are weighted by the inverse of the number of decisions faced by the participant, scaled to
add up to 3618, the number of observations. The weighting is done using the ratio of the number of decisions made by a participant to
the average number of decisions. Participant demographics (age, gender, call center work experience), time remaining, quiz errors, and
elicited risk preferences in the gain and mixed (losses and gains) domain are controlled for in (2) and (4). ***p < 0.01, **p < 0.05,
*p < 0.1

even after controlling for demographics, risk and loss preferences, quiz errors, and time budget

remaining. We discuss the role of personal characteristics in transfer decisions in §6.

To test H1c (that transfer rates are unaffected by the presence of a transfer cost after controlling

for transfer return), in (3) and (4) we replace the τ2 and c regressors by the transfer return measure

(π(θ)), and include a Cost treatment indicator. The estimates confirm that participants respond

to the transfer return, with the transfer return coefficient being significant in both specifications

(p < 0.01). This is unsurprising given that each unit increase in transfer return increases the gains

from transferring. However, contrary to H1c, transfer rates are lower in the Cost conditions (both

p < 0.05), even after controlling for transfer return. The effect is not only statistically but also

economically significant. For example, measured at transfer return = 0, the marginal effect of the

Cost treatment is 14.4 percentage points (p < 0.05), suggesting a strong overreaction to the presence

of a transfer cost. Hence:
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Result 1: H1a is supported: transfer rates are increasing in resolution time (τ2). H1b is sup-

ported: transfer rates are decreasing in transfer cost (c). H1c is not supported: after controlling for

the economic incentive to transfer, the presence of a transfer cost reduces transfer rates.

The result regarding H1c has important implications for models of discretionary server behavior

and for incentive design in practice. In §6 we further explore drivers of this result. We next describe

our second experiment, in which we vary congestion.

5. Experiment 2: Variable Congestion

The remainder of our experimental investigation focuses on understanding how variable congestion

(q < 1) impacts gatekeeper behavior. Similar to Experiment 1, we use the random utility model in

§3.3 to develop and test hypotheses.

To estimate the random utility model for the variable congestion case we need to modify the

transfer return measure π(θ). When q = 1 there are only two stationary policies and the transfer

return measure is fully characterized by the parameter vector θ (equation 1). In contrast, when

q < 1 the construction of π(θ) is more complicated. This is because there are now three admissible

stationary policies, and we must choose which policies factor into the utility calculations of the

decision-maker. We resolve this by assuming: 1) A gatekeeper who transfers when the queue is

empty is following the “Always Transfer” policy, because if the gatekeeper was willing to transfer

when the queue is empty and be idle before starting a new request, then the gatekeeper should also

transfer when the queue is nonempty, 2) A gatekeeper who continues when the queue is nonempty

is following the “Always Continue” policy, because if the gatekeeper was willing to continue even

though the gatekeeper could transfer and immediately beginning handling a new request, then the

gatekeeper would also be willing to continue if transferring requires additional idle time, and 3) in

all other cases, the gatekeeper is following the policy with the highest profit per unit time implied

by the gatekeeper’s action.

Denoting by R∗ the maximum of R(1,1,θ), R(2,2,θ), and R(2,1,θ), we can formalize this as

follows:
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Definition 2. When q < 1, the transfer return π(θ) of a condition θ is given by

π(θ) =



R(1,1,θ)

R(2,2,θ)
− 1, if

[
Q= 0 and R∗ =R(2,2,θ)

]
or
[
Q= 1 and R∗ =R(1,1,θ)

]
R(1,1,θ)

R(2,1,θ)
− 1, if

[
Q= 0 and R∗ =R(1,1,θ)

]
or
[
Q= 0 and R∗ =R(2,1,θ)

]
R(2,1,θ)

R(2,2,θ)
− 1, if

[
Q= 1 and R∗ =R(2,1,θ)

]
or
[
Q= 1 and R∗ =R(2,2,θ)

]
(3)

5.1. Hypotheses

With variable congestion (q < 1), the gatekeeper experiences periods with an empty queue and

periods with a nonempty queue and may therefore be idle while waiting for a request to arrive.

When the queue is nonempty, the gatekeeper can transfer the current request and immediately

begin handling the next request. But, when the queue is empty, the gatekeeper must wait for a new

request to arrive. Hence, transfer return and, consequently, transfer rates should be lower when

the queue is empty than when it is nonempty.

H2a: Holding all other parameters constant, transfer rates are lower when the queue is empty.

Similar to H1a and H1b in Experiment 1, H2a states the null that the direction of the response to

a single change in the decision environment (here: queue state) is consistent with what the random

utility model would predict. Further, analogous to H1c in Experiment 1, we can again examine

the magnitude of that response by testing the null hypothesis that transfer rates should remain

unaffected by queue state after controlling for transfer return.

H2b: Holding transfer return constant, the queue state has no effect on transfer rates.

To test H2b we include the queue state in the random utility model, and test the null that the

response to the queue state is fully captured by its economic implications (π(θ)). Rejecting H2b

would then suggest that human gatekeepers over/underreact to the queue state.

5.2. Experiment Design

Experiment 2 was conducted using the same subject pool, recruitment method, and protocols as

Experiment 1. A total of 137 participants were recruited (16 participants were excluded from the
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Table 3 Summary of Experiment 2 Conditions

Treatment/
Condition

#
Subjects

Parametrization (θ)

Optimal Policy

Transfer Return

r p1 p2 τ1 τ2 c q
Queue
Empty

Queue
Nonempty

VarQ 121

V45 42 100 0.5 0.5 10 45 0 0.5 Always Transfer 11.1% 25.0%
V30 37 100 0.5 0.5 10 30 0 0.5 Transfer When Nonempty -5.6% 5.9%
V15 42 100 0.5 0.5 10 15 0 0.5 Always Continue -25.0% -3.6%

Note. Subject numbers in column 2 exclude 16 participants who failed comprehension tests. The unit of time is set to five periods (since all resolution times
are multiples of five). It can be shown that the payoffs under each admissible stationary policy are equivalent to the payoffs when the unit of time is set to one
period, and the reward (r) and resolution times (τ1, τ2) above are divided by five.

data based on comprehension tests). In each condition, we set q to 0.5. Similar to Experiment 1,

we choose all time parameters to be multiples of five. Further, to mitigate the effects of uncertainty

on behavior we replaced stochastic waiting times with a deterministic waiting time (10 time units).

To focus on the effect of variable congestion on transfer behavior, we set c= 0 and τ2 = {15,30,45},

such that each of the three possible optimal policies emerge: “Always Transfer”, “Always Con-

tinue”, and the state-contingent “Transfer When Nonempty” policy. The remaining parameters

are unchanged relative to Experiment 1. Similar to Experiment 1, the average participant earnings

was approximately $4 and the average duration was 18 minutes. The experimental conditions and

the transfer return measures are summarized in Table 3. (When comparing Experiment 1 and

Experiment 2 conditions, we will sometimes refer to the pooled Experiment 2 conditions as the

VarQ treatment.)

5.3. Experiment Results

Descriptive Statistics Figure 5 shows the transfer rate distribution in the Experiment 2

conditions, where each row pertains to one of the three conditions. Within each row, the left column

displays transfer rates when the queue was nonempty, while the right column displays transfer

rates when the queue was empty. Our first observation concerns the proximity of the transfer rates

to their theoretical optimum. Indeed, similar to the Experiment 1 conditions, modal transfer rates

in all six scenarios coincide with the model predictions. Further, mean transfer rates in five out of

six scenarios are significantly different from 0.5 at the 0.05 significance level (one sample t−tests;
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Figure 5 VarQ Treatment: Transfer Rates
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in the τ2 = 30, queue empty case, the p−value is 0.094). Our second observation concerns the effect

that the queue state has on participant transfer rates. Recall that transfer return is higher when

the queue is nonempty since the gatekeeper can immediately handle a new request. It appears that

participants understand this distinction as transfer rates are higher when the queue is nonempty

(left column of Figure 5) than when the queue is empty (right column of Figure 5).

Hypothesis Tests Table 4 presents Random Logit regressions with the decision to transfer

(0-1) as the dependent variable. In (1) and (2) we regress transfer decisions on τ2 and on an

indicator that the queue is empty, with and without controls. We find that, similarly to Experiment
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Table 4 Random Logit Regressions: Experiment 2 Treatment (VarQ)

(1) (2) (3) (4)

τ2 0.104*** 0.110***

(0.019) (0.019)

Queue Empty -1.368*** -1.375*** 0.109 0.176

(0.161) (0.161) (0.281) (0.279)

Transfer Return (π(θ)) 9.515*** 9.994***

(1.625) (1.630)

Controls: demographics, quiz errors, no yes no yes

risk/loss preferences, time remaining

Observations 1529 1529 1529 1529

Participants 121 121 121 121

Log Likelihood -711.487 -703.517 -709.060 -700.971

AIC 1430.975 1427.034 1426.120 1421.941

Note. Random effects Logit regression coefficients are reported. Dependent variable is transfer decision (1: transfer, 0: continue).
Intercept term not displayed. Observations are weighted by the inverse of the number of decisions faced by the participant, scaled to
add up to 1529, the number of observations. The weighting is done using the ratio of the number of decisions made by a participant to
the average number of decisions. Participant demographics (age, gender, call center work experience), time remaining, quiz errors, and
elicited risk preferences in the gain and mixed (gains and losses) domain are controlled for in (2) and (4). ***p < 0.01, **p < 0.05,
*p < 0.1

1, increasing τ2 significantly increases transfer rates. Also, consistent with H2a, transfer rates are

significantly lower when the queue is empty. In (3) and (4) we explicitly control for the impact

that τ2 and the queue state have on the gatekeeper’s economic incentive to transfer by regressing

transfer decisions on transfer return. Additionally, to determine whether the queue state influences

gatekeeper behavior beyond its effect on transfer return, we continue to include the “queue empty”

indicator. We find, unsurprisingly, that transfer return has a significant positive effect on transfer

rates. Further, after controlling for transfer return, consistent with H2b, queue state does not have

a significant effect on transfer rates (p= 0.527). Hence:

Result 2: H2a is supported: transfer rates are lower when the queue is empty. H2b is supported:

holding transfer return constant, the queue state has no effect on transfer rates.

Optimality We have so far examined how incentive systems and congestion influence transfer

decisions. Alternatively, we can examine average optimality of transfer decision-making in each

treatment (i.e., average deviations between observed and optimal transfer decisions). This compar-

ison is possible because average transfer return, and hence average difficulty of finding the right
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solution, is similar in the Baseline, Cost and VarQ treatments. The comparison shows that par-

ticipants make the optimal transfer decision at a similar rate across the three treatments, with the

differences not being statistically significant (65.6, 67.1, and 69.2 percent optimality in the Baseline,

Cost and VarQ treatments, respectively; rank sum tests: p > 0.494). This suggests that, on aver-

age, the presence of a transfer cost or variable congestion does not make participants significantly

better or poorer decision-makers.

6. Mechanisms and Discussion

Our experimental results suggest that gatekeepers exhibit transfer behaviors that are directionally

consistent with the analytical benchmarks: transfer rates increase with the handling time of a

request and with the congestion level in the queue. Further, behaviors appeared consistent with

a random utility model, in that optimal policies were followed more closely when there was a

stronger incentive to do so. However, there were some differences between the incentive systems.

With a pure bonus-based incentive system, deviations from optimality were equally strong in both

directions (transferring when it is optimal to continue and vice versa). However, when we introduced

an explicit transfer cost into the incentive system, decision-makers transferred more even when

controlling for the relative payoff differences between policies (transfer return). This suggests that

gatekeepers may overreact to the cost component in the incentive system.

To better understand the reduction of transfers in the presence of a cost, we examined sev-

eral potential explanations. One possible explanation suggested in the sequential decision-making

literature is loss aversion (Gans and Croson 2008, Long et al. 2019). If gatekeepers experience

disproportionate pain from the monetary losses following a transfer, relative to the gain following a

successful resolution of a request, transfer costs may reduce transfer rates relative to a pure bonus-

based system with equivalent incentive strength. Indeed, in the Cost treatment, loss aversion was

correlated with transfer rates (ρ = −0.22, p = 0.067). However, as shown in column (4) of Table

2 the result persisted even after controlling for loss aversion (that is, loss aversion alone cannot

explain the result).
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Table 5 Random Logit Regressions with Exponential Discounting (Experiment 1)

Discount factor

Long-Term 0.99 0.95 0.9 0.8 0.7 0.6 0.5

Transfer Return (π(θ)) 4.128***
Cost Treatment -0.883**
Discounted Transfer Return 3.887*** 3.157*** 2.418*** 1.390*** 0.769*** 0.414*** 0.212***

Log likelihood -1493.31 -1495.38 -1494.87 -1494.74 -1495.19 -1496.18 -1496.98 -1498.13
AIC 3008.62 3010.76 3009.74 3009.48 3010.38 3012.37 3013.96 3016.25

Note. Dependent variable is Transfer decision. Data include Baseline and Cost treatments (Experiment 1). Long-term specification uses transfer return
measure (π(θ)) from Definition 1 in §3.3. Remaining specifications use discounted measure of transfer return instead of original measure, with discount
factors reported in second row of table. Discounting occurs every 5 periods. To control for extreme values of discounted transfer returns at the end of
the horizon, all specifications include transfer return for all but the final decision in each round, and a dummy for the final decision. All specifications use
same controls as Table 2, column (4) specification. Standard errors are omitted for brevity. ***p < 0.01, **p < 0.05, *p < 0.1

Another possible explanation is narrow bracketing (Rabin and Weizsäcker 2009) or limited-

look-ahead behavior (Johnson et al. 2002, Gabaix et al. 2006), which assumes a partially myopic

consideration of the value function. These mechanisms would suggest that a transfer cost is treated

differently, because it leads to an immediate cost accrual while delaying earnings. To test this

explanation we examined whether a model in which the more distant payoffs are weighted less than

the immediate ones would fit our data better. Specifically, we replicated the analysis in Table 2,

col. (4), removing the Cost Treatment dummy, and replacing the time-invariant R(·, ·,θ) measure

by the expectation of the sum of discounted payoffs, with discounting factors of 0.5, 0.6, 0.7, 0.8,

0.9, 0.95, and 0.99.

The log likelihoods and AIC measures for our original specification and for the models with

discounting are summarized in Table 5. Examining both of these criteria suggests that all models

with discounting result in a poorer fit relative to the standard model; however, among these models,

discount factors of 0.9 and 0.95 perform the best (AICs of 3009.74 and 30009.48), and the most

myopic model (discount factor of 0.5) performs the worst (AIC of 3016.25). Thus, overall subjects

appear quite forward-looking, i.e., myopia alone would not produce our results.

Lastly, theories of information processing would suggest that more complex incentive schemes

may lead to the adoption of simplified decision heuristics (Sweller 2010). In other words, when

the problem is complex, the mere presence of a transfer cost may prompt a mental shortcut (or a

more visceral reaction) towards avoiding transfers. This explanation appears to be most consistent
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with our data. Indeed, when the penalty for errors is low (transfer return close to -0.1 or 0.1), the

transfer rate gap between Baseline and Cost treatments is between 7 and 10 percentage points. In

contrast, when the penalty for errors is high (transfer return above 0.2), the transfer rate gap is

reduced to 2 percentage points. Moreover, the overreaction to transfer cost appears to be stronger

for participants who have difficulties combining the time and reward information available to them:

transfer rates in the Cost treatment are negatively correlated with the participant’s performance

on the comprehension questions (ρ=−0.37, p < 0.01). Taken together, these results are consistent

with incorrect information processing as the main behavioral mechanism.

Our second result is that under variable congestion subjects made random errors but did not

over/undertransfer under an empty/nonempty queue state. That is, different from the overreaction

to cost, there were no systematic deviations in response to congestion information. One reconcili-

ation of this result is that processing monetary information has a different affect than processing

operational information, such as queue states. Taken together, these results suggest that informa-

tion processing deficits can be nuanced, especially in problems that involve trading off money and

time, and that further research is needed to better understand these problems.

7. Concluding Remarks

In this study we modeled gatekeeper transfer decisions as a dynamic finite-horizon problem in which

a random number of stopping decisions are made sequentially. We solved this problem analytically

and developed comparative statics to formulate hypotheses regarding human gatekeeper behavior.

We then tested these hypotheses in two experiments, in which we examined how an explicit transfer

penalty, and variable congestion levels affect transfer decisions.

To expose potential biases in transfer decision-making, we adopted a research design that uses

payoff space (as opposed to action space) to make all-else-equal comparisons between experimental

conditions (Harrison 1989, Smith and Walker 1993). To extend this idea to a dynamic setting,

we developed a dynamic model with a stationary optimal policy and a finite horizon, so that

the payoff consequences of decisions are time-invariant and can be collapsed into a single number
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(“transfer return”). We then examined behaviors using pairwise comparisons of conditions with

similar transfer return, and a random utility model that controls for transfer return econometrically.

Our findings expose the features of the incentive system and queueing environment that human

decision-makers can respond to, and the ones they have difficulties incorporating. Specifically, we

find that (1) decision-makers tend to overreact to a transfer cost and (2) decision-makers do not

over/underreact to the queue being full or empty.

The strong reduction of transfers in response to cost aligns with the ABC Bank (our industry

partner) data discussed in §1. Indeed, while the management team of the ABC bank may have been

pleased with the drop in transfer rates after the scorecard rollout, our experimental results suggest

that the rates may have fallen too much, as agents struggled to correctly calibrate their response

to incentives. While we cannot make any definitive conclusions about the performance effects in

the field, our findings suggest that managers should be careful when introducing loss incentives

(monetary penalties). Such incentives may send unintentional signals about which behaviors are

desirable and which are not, making it more difficult for gatekeepers to make rational decisions.

The mismatch between desired and realized transfer behaviors can be costly for the organization

operating the gatekeeper system. It is therefore natural to ask what drives this behavior and how

it can be remedied. While our investigation provides some initial evidence that the reduction of

transfers is a more psychological response to the presence of the cost, a deeper investigation of the

mechanisms and moderators of that response may be worthwhile. For example, can the deviations

be reduced through more careful rollout and communication of the incentive system? A broader

question to consider would be to determine the pervasiveness of such behaviors: do they happen

independent of the operating environment, or will they be more pronounced as task or queue

system complexity is added to the operating system?

While decision-makers struggled to correctly respond to bonus+cost incentives, we did not find

any systematic deviations in response to queue state. This suggests an opportunity to introduce

congestion information into the call management system used by call centers like the one at ABC
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Bank. To the extent that encouraging transfers during periods of high congestion can help reduce

waiting times, managers may consider making congestion levels more visible or salient to gatekeep-

ers who appear to (at least directionally) be capable of responding to simple congestion information.

Given that the main objective of our model was to develop analytical benchmarks for behavioral

experiments, our needs were served by a single gatekeeper subsystem within the larger system,

as shown in Figure 2. However, the general gatekeeper-expert framework may prove helpful in

examining broader questions around service system design, including optimal gatekeeper/expert

staffing levels, as well as the implications of transfers on perceived and actual quality of service

delivered to consumers. An even more comprehensive investigation would examine the transfer

dynamics in various service settings, for example, call centers, IT Support, healthcare delivery, and

other forms of collaborative service production.
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Appendix A: Experimental Instructions and Screen Shots (Baseline treatment, abridged)

This study consists of two rounds of a virtual task. In both rounds you will be playing the role of a customer service

representative resolving a series of customer issues. Customer issues will arrive one by one, and you will be launching

several attempts to resolve them. Before starting the first round, you will complete a training round. In the training

round you will play a shorter version of the task, and your points will not count towards your bonus. The training

round will help you familiarize with the task.

As you resolve customer issues, you will be accumulating points: each resolved issue earns you 100 points. However,

you do not know how many attempts are needed to resolve each issue. For each issue, the number of attempts required

to resolve it will be determined by luck (a random number generated by the computer, similar to a lottery). In

particular, each issue can take either one or two attempts to resolve, and it is equally likely that the issue will be

resolved after one attempt, or after two attempts. In other words, there is a 50% chance that the issue will be resolved

after just one attempt, and a 50% chance that it will require two attempts to be resolved. Each issue is unrelated

to the previous ones. This means the number of attempts needed to resolve any given issue does not depend on the

number of attempts needed for the previous issues.

In the training round you will have a total of 150 virtual time units. You will earn 100 points for each resolved issue.

The times required for each attempt are listed below.

attempt #1: 10 time units; attempt #2: 25 time units

For example, suppose you start the game and the first issue takes one attempt to resolve. Then, your time allowance

will drop by 10 units, from 150 to 140 time units. If, in contrast, you take two attempts to solve the issue, then your

time allowance will drop by 10+25 = 35 units, from 150 to 115 time units.

Note: you cannot change the order of the attempts. This means that you must start every issue with attempt #1.

Then, if the first attempt does not resolve the issue, you decide whether to launch attempt #2.

At any point you can decide to stop the attempts, and instead transfer the issue back to the system. After that, you

will not see the issue again and instead you will begin working on a new issue. This process will repeat until you run

out of the 150 time units allocated to you at the beginning of the experiment.

How long will I be working on the task? Recall that you will have a time budget of 150 virtual time units in this

round. This means at some point your time budget will drop to a level that is not sufficient to resolve an issue. When

that happens, the round will end and we will pay the last few time units at a per unit price to make you whole. In

particular, you will then be compensated with 5 point(s) per remaining time unit. For example, suppose you have

resolved 4 issues, transferred 2 issues and have 10 time units remaining in your budget. You will earn 4*100 = 400

points from resolving the issues. In addition, we pay you 10 * 5 = 50 point(s) for the remaining time units. This

means that your total earnings will be 400 + 50 = 450 points.
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Figure A.1 Screenshots of the main decision screens.

(a) Screenshot of decision screen: participant is about to attempt the first potential solution.

(b) Screenshot of decision screen: participant is deciding whether to transfer the issue.
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