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Many Operations Management (OM) models assume that people act as forward-looking optimizers in

dynamic environments. We experimentally examine this assumption. To cover a wide range of settings we

look at several common classes of dynamic decision problems, and characterize behavior as either optimal, or

as consistent with one of several non-optimal policies. At a high level, our results suggest that behaviors are

not uniform and depend on the features of the problem. Specifically we find that: (1) Decisions are generally

forward-looking (though not always optimal) in Technology Adoption and Capacity Allocation problems,

but not in Search/Stopping problems. (2) The optimal policy is a good, but not the best, representation of

behavior in both Technology Adoption and in Capacity Allocation; in both tasks simpler forward-looking

heuristics achieve a better fit. (3) Performance (payoff) is correlated within-subject for different dynamic

tasks but the specific policy usage may vary even within-subject. Together, these results provide new micro-

foundations for researchers interested in building more descriptive models of dynamic behavior.
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1. Introduction

Many problems in Operations Management (OM) involve decisions that are “dynamic” or “sequen-

tial”. The common approach to solving these problems is dynamic programming (Bertsekas 1995,

Puterman 2014, Sutton and Barto 2018), which produces decision rules that can often be executed

by software algorithms with no human involvement. Some sequential decisions, however, are less

likely to be automated, for example a supplier choosing among retailers when allocating capacity

(Cachon and Lariviere 1999), a consumer making periodic purchase decisions (Levin et al. 2009), or

a shopper searching for the best alternative (Stahl 1989, Cachon et al. 2008). The use of dynamic

programming in these settings presumes that human decision-makers are capable and willing to

act as forward-looking optimizers. The goal of this study is to evaluate this premise.

Failure (or unwillingness) to perform forward-looking optimization is recognized in a number

of studies that distinguish between “myopic” and “strategic” consumers (Cachon and Swinney
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2009, Levin et al. 2009, Li et al. 2014). Indeed, some work in the revenue management and pricing

literature has began incorporating richer behavioral phenomena related to sequential consumer

choices (Özer and Zheng 2012, 2016). However, there has not been a systematic investigation into

when (i.e. in what types of dynamic settings) we can expect decision-makers to be myopic or

forward-looking, and whether a binary classification into one of these two categories is an accurate

depiction of reality. Some dynamic decisions, such as search problems (Hey 1982, 1987, Seale and

Rapoport 1997, 2000), or patient admissions (Kim et al. 2020, Kim and Tong 2021) have been

explored from a behavioral perspective. However, the focus is typically on identifying heuristics

specific to the focal environment, rather than on more generalizable behavioral rules that would

apply to a range of settings.

The lack of behaviorally plausible alternatives to the standard model of forward-looking opti-

mization is surprising given the emergence and broad acceptance of “behavioral”, i.e. boundedly

rational models in other decision domains, such as risk and uncertainty (“Prospect Theory”, Tver-

sky and Kahneman 1974, 1992), time delays (“Hyperbolic Discounting”, Laibson 1997) and social

comparisons (“Inequity Aversion”, Fehr and Schmidt 1999, Bolton and Ockenfels 2000). These

models posit that by focusing on (expected) utility maximization alone the standard economic

model may oversimplify behaviors. Similarly, in the domain of dynamic decision-making, the clas-

sic forward-looking optimization paradigm may be inconsistent with how people approach the

problem. Finding the optimal solution may be beyond an individual’s cognitive abilities – or the

cognitive effort may not be worth the returns.1

The goal of this study is to take a broad look across different dynamic settings to identify the

major behavioral “landmarks” as a guide to future efforts to develop a general behavioral model of

dynamic decision-making. To do so, we will explore multiple distinct decision problems, and will

be focusing on decision rules that apply across problems (rather than policies tied to one specific

problem). Our research questions are:

- What types of dynamic environments prompt a forward-looking vs. a more static (not forward-

looking) solution approach?

- Among the forward-looking solution approaches, which are the most prevalent ones?

- At the individual level, do people use similar approaches across tasks? Are there individual

markers that predict the solution approach?

To cover a wider range of plausible behaviors we begin by developing a general taxonomy of

possible approaches to solving dynamic problems (Figure 1). This taxonomy is not exhaustive, but

1 It is important to note that our focus is not on time discounting, i.e. the utility weights placed on future payoffs,
which have been studied extensively in the literature, e.g. Laibson (1997), Tirole (2010). None of our experiments
involve discounted payoffs. Rather, we focus on the cognitive complexity of considering the range of future possibilities
when making a dynamic decision.



Kagan, Leider & Sahin: Dynamic Decision-making
Article submitted to Management Science 3

Figure 1 Taxonomy of Decision Rules

it synthesizes the types of heuristics proposed in the literature (Section 2), with the addition of

several decision rules reported by our experimental participants in post-study questionnaires.

At a high level, decision rules can be either static or dynamic (forward-looking). Static rules

presume that the decision-maker uses a fixed decision rule throughout the task horizon (e.g. to

always purchase or always stop if the available product has a value above some fixed threshold).

More sophisticated, forward-looking policies include the optimal policy and several non-optimal

heuristics. These heuristics simplify the problem by shortening the decision horizon, by repeatedly

solving a simplified problem, or by using a break-even rule for accruing value/spending resources.

Together, these rules capture a range of potential behaviors, are applicable across a range of

problems and are identifiable from subjects’ choices.

We mathematically formulate each decision rule (policy) for three classes of dynamic decision

problems: (1) Technology Adoption, (2) Capacity Allocation, and (3) Search/Stopping problems.

We choose these problem classes because they represent a large share of dynamic decision problems

in the Operations Management literature and apply to a wide range of decision contexts, both

for businesses and consumers. Each problem class has its own unique structure, and so it is not

a priori clear whether the same strategies will be used across problems, or whether each category

prompts decision-makers to use a different strategy. To explore a variety of decision environments,

we choose versions of these problems that span a range of complexity, e.g. our Technology Adoption

problem is deterministic with a simple decision and state space, while the Capacity Allocation is

stochastic and has a richer state and action space. We then conduct laboratory experiments with

a naturalistic framing (e.g. purchasing a new laptop, or searching for an apartment) to examine

the prevalence of each type of decision rules in each problem class.

To be able to identify which policies are common in each task, a key design feature of our

experiments is the use of the strategy method. That is, rather than directly asking participants

to make a decision (e.g. stop or continue), we elicit their acceptance thresholds (e.g. “What value
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would make you stop in the next period?”). To ensure that different policies are well identifiable,

we choose versions and parametrizations of tasks that produce a noticeable difference in thresholds

implied by each policy. The resulting data set is a richer representation of behavior that captures

a large number of counterfactuals and allows us to reliably match decision rules to subjects.

Our first experimental result is that the degree of strategy sophistication varies by problem.

For the Capacity Allocation and Technology Adoption tasks, most subjects use a forward-looking

strategy, whereas in Search and Stopping tasks the majority use simple static rules. This result

is not fully explained by the differences in incentive strength, in payoff accumulation rate, or in

decision elicitation procedures. Rather, what prompts the different types of approaches appears to

be a more fundamental difference between Search/Stopping problems and other dynamic problems.

Second, specific policies also differ by problem class. Static strategies in Search/Stopping prob-

lems tend to reflect salient characteristics of the problem. Depending on the problem, subjects

may either target a certain, satisfactory payoff value or, a certain probability of a random event.

Forward-looking policies also differ by task. The most common policy in Technology Adoption is

the limited look-ahead policy, while the most common policy for the Capacity Allocation task is

the reoptimization heuristic. This aligns with the increased complexity of our Capacity Allocation

task relative to the Technology Adoption task, in part because the former is stochastic, while the

latter is deterministic. The complexity and stochasticity of the Capacity Allocation task seem to

require the kind of substantial simplification offered by the reoptimization heuristic.

Third, performance (payoff) is correlated within subject for different dynamic tasks. However,

the strategies used in different tasks often differ within-subject. Even top performers do not con-

sistently follow optimal or even forward-looking policies across all tasks, but rather use a mix

of forward-looking, and well-calibrated static policies. Additionally, subjects’ performance on the

Cognitive Reflection Task (CRT) correlates with their strategies and performance in (the simplest)

Technology Adoption task but is a weaker predictor in other tasks. These results point to an

underlying ability to solve dynamic problems that is distinct from standard measures of analytic

intelligence, but also suggest that this ability may translate into different decision rules, depending

on the features of the problem.

Taken together, our results suggest that treating people as either fully myopic or as perfect

forward-looking optimizers may be unrealistic. Rather, behavioral patterns are sometimes sophis-

ticated (though not always in ways optimal policy would imply) and other times not, where

sophistication is determined by the person’s abilities, problem features, and the cognitive costs

and monetary benefits of using a more sophisticated approach. Understanding these patterns can

help researchers build better, more descriptive models of human decision-making, and can help

managers appropriately respond to consumers exhibiting such behaviors.
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2. Literature

While some dynamic settings have been explored in the literature, there are no studies that we are

aware of that study behaviors across multiple, distinctly different dynamic settings. Rather, most

existing work examines a particular dynamic setting, e.g. job search or life-cycle consumption-

savings, with a natural focus on the models and behaviors tied to that setting. The narrow focus

helps better understand and inform the relevant setting; however behaviors identified in one setting

may not easily export to another. For example, it is not clear how to take the intuition of an

explore-exploit heuristic from the search domain and apply it to a technology adoption problem.

Nonetheless, our study is informed by, and helps integrate some of these streams of literature.

Search and Stopping Early studies of search and stopping behavior found subjects to perform

quite close to optimal, using sophisticated threshold rules (Schotter and Braunstein 1981, Cox

and Oaxaca 1989). However, much more commonly subjects end the search too early (Seale and

Rapoport 1997, 2000, Bearden et al. 2006, Eriksson and Strimling 2010). Some work has found

that structural factors, such as search cost (Zwick et al. 2003) or completeness of information

(Palley and Kremer 2014), affect individuals’ propensity to search too little or too much. Common

heuristics include trend-based rules (Hey 1982, 1987, Moon and Martin 1990), searching for a fixed

number of periods (Moon and Martin 1990), explore-exploit patterns (Seale and Rapoport 1997)

and satisficing (Phipps and Meyer 1985, Sonnemans 1998). Schunk and Winter (2009) find that

most people use some combination of a fixed stopping rule, a satisficing stopping heuristic, or a

finite-horizon search rule. Importantly, the existing studies focus on a specific economic setting and

choose the variant of the search problem that represents that setting. In contrast, our objective is

to characterize the policy used by each subject (as opposed to documenting when they stop); we

therefore choose structural features of the search problem that best reveal the policy in use.

Intertemporal Saving and Spending A second well-studied type of dynamic problems are

lifecycle savings. In these problems an individual earns income in each period and chooses how

much to consume versus save/invest (see Hey and Dardanoni 1988, for an early example, and Duffy

and Li 2019, Cornand and Heinemann 2019, for excellent recent surveys). The classic finding is

that subjects do too little income smoothing, with current consumption too closely tied to current

income which leads to too little wealth accrual (Carbone and Hey 2004) . Noussair and Matheny

(2000) show that either over- or under-consumption can occur depending on the investment tech-

nology, but that in either case suboptimal consumption “binges” are common. Carbone (2006) finds

that subjects are more forward-looking at the start of a problem but become more myopic over

time. Brown et al. (2009) examine two potential explanations for these behaviors: a time preference

explanation (preference for immediacy) and a cognitive limit explanation (bounded rationality).
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Meissner (2016) shows that debt aversion significantly drives subject choices. Ballinger et al. (2003,

2011) explore individual correlates of task performance and find that pattern completion and work-

ing memory tasks predict performance; that is, to perform well one requires both, attention to the

problem’s complexity and the cognitive ability to manage complexity.

Similar to the search literature, the studies in the lifecycle savings literature are geared towards

a specific setting – personal finance decisions. The unique features of this setting, such as the

negative associations people may have with debt, make it difficult to generalize the results to other

settings. Nonetheless, these studies are related to ours: one of our tasks, the Capacity Allocation

task, also involves trade-offs between immediate vs. delayed (but potentially higher) earnings. To

focus on the dynamic allocation trade-off we remove potentially aversive concepts such as debt and

technical concepts such as interest rates, and instead focus on the operational decision to allocate

a fixed capacity among sequentially arriving consumption alternatives.

Capacity and Revenue Management Applications This group of studies examines indi-

vidual ability to balance over and underusage of the available units, as subjects decide how to

allocate their inventory among sequentially arriving candidates. Some studies have found overly

conservative behaviors at the beginning of the sale cycle (Bearden et al. 2008, Bendoly 2011), while

others find overly accepting behaviors (Bendoly 2013). Diehl and Sterman (1995) document an

overall poor performance in a more complex inventory management setting. They attribute this to

the difficulty of taking a system level view and being (un-)able to correctly understand how one’s

actions interact with environment to influence outcomes (Similar to the typical behaviors in the

Beer Game, see for example Sterman 1989). Kim et al. (2020) and Kim and Tong (2021) study

capacity management in a health care setting, where inventory (hospital bed availability) changes

over time and the task is to admit (or not) sequentially arriving patients.

Leider and Şahin (2014) examine behavior in a capacity allocation setting where the task is

to accept or reject sequentially arriving consumption opportunities with different values (See also

Ascarza et al. 2012, Gopalakrishnan et al. 2015). They find consumption decisions to be sophisti-

cated, but not optimal, with features best described by a forward-looking reoptimization heuristic.

Our Capacity Allocation problem (Section 3) builds on their design, with some modifications

to allow better separation between heuristics. More importantly, to produce more generalizable

insights our study compares behaviors in the Capacity Allocation task with other dynamic settings.

Other Dynamic Decision Settings Long et al. (2020) study sequential abandonment deci-

sions for projects with uncertain value and find that abandonment decisions are highly path depen-

dent, being influenced by loss aversion, status quo bias, and the sunk cost fallacy. Kremer and

de Vericourt (2020) examine the dynamic decision to continue/stop collecting tests before making
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a medical diagnose. They find that decisions are linked to system congestion, with subjects diag-

nose prematurely at low congestion, and not stopping fast enough at high congestion. Hathaway

et al. (2021) look at similar issues in a customer service context and find that behaviors correctly

respond to system congestion. Anderhub et al. (2000) look at expenditure decisions from a limited

monetary endowment over a stochastically varying number of periods and find that subjects are

able to correctly incorporate information updates into their decisions.

Gabaix et al. (2006) examine costly information acquisition and find that a partially myopic

policy fits the data better than the fully rational model. Lastly, Oprea (2020) study what makes a

dynamic decision policy attractive and find the number of decision states, the number of potential

transitions, and the presence of absorbing states to matter. These studies are related because

they explore the interplay between problem/policy complexity and policy adoption. Rather than

studying the features of a specific problem, we study a range of problem classes and explore the

differences and similarities of approaches used to solve these problems.

3. Dynamic Decision-making Models

We begin by introducing a general discrete-time finite-horizon dynamic problem and its main

ingredients. We then present the three problem classes studied in our experiments and state the

relevant decision rules.

3.1. A General Dynamic Decision Problem

To make the models amenable to experimentation with untrained participants, we restrict our

attention to systems in which rewards (costs) are additive over time. The state transitions and the

rewards accrued to the decision-maker are illustrated in Figure 2. The system runs from t= 1 to T

in discrete time and with discrete and finite states, with appropriately chosen initial and terminal

conditions. If we denote by at the action taken at time t and by wt any stochastic disturbance,

then the system’s states st evolve as follows:

st+1 = ft(st, at,wt), t= {1,2, .., T − 1}

where ft is the transition function at time t that can depend on the previous state, on the action

taken at time t and on the stochastic disturbance. If we denote the reward (or cost) incurred at

time t by rt(st, at,wt) then the total expected reward (or cost) is as follows:

E

[
T∑

t=1

rt(st, at,wt)

]
.

We restrict our attention to processes with no time discounting, and note that rewards may be

zero for some of the stages (for example, in stopping problems).
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Figure 2 A General Dynamic Decision Process
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3.2. Problem Formulations

We next introduce the three problem classes studied in our experiments. Each class falls under the

general framework of finite-horizon dynamic decision processes (Figure 2); at the same time each

class has some unique features that may lead to a more/less widespread adoption of certain types

of decision policies. For each problem we use a naturalistic framing with a context that is familiar

to a typical experimental participant (college student).

Technology Adoption Problem Sequential technology adoption is a classic problem in many

firm and consumer settings (See, for example Balcer and Lippman 1984, Ho et al. 2002). Below

we present the consumer version of the problem to mirror the decision situation faced by our

experimental participants; however variants of this sequential adoption are quite common in man-

ufacturing settings, with the focal decision being when to invest in additional capacity or in a new

technology (See, for example Porteus 1985, Van Mieghem 1999).

Consider a college student who currently owns a laptop and derives u0 units of value per period

from using that laptop. New versions of the laptop are scheduled to be released in years t= 1,2, ..., T

and are valued by the student at ut units per period (ut ≥ u0 for t= 1,2, ..., T and at least weakly

increasing in t). The release dates of new versions and specifications are common knowledge. Each

new model purchase costs p units. In this problem, the state (st) is the value of the laptop currently

owned by the student in period t, the control (at) is whether to upgrade or not in period t and

there is no disturbance since the problem is deterministic. If the student upgrades to a new model

(at = 1) then the new state is the value of the new model, st+1 = ut. If not (at = 0) , then the state

remains unchanged, st+1 = st, i.e. the student keeps the same model as in the previous period. The

net reward earned in each period (rt) is the value of the laptop owned in that period minus the

price if a purchase was made. The objective is to maximize the sum of the rewards over T periods

net the total cost of acquisition(s).

Capacity Allocation Problem Finite-horizon capacity allocation is another classic dynamic

problem in the OM literature (Lee and Hersh 1993, McGill and Van Ryzin 1999). As before, we use

a naturalistic context and frame the problem as a series of consumption decisions, where a college
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student with a meal plan consisting of C free meal tokens needs to consume them over T days

with C <T . Each day, meal values X are drawn independently from the distribution F known to

the student. The goal is to maximize the sum of meal values by allocating C free meal tokens to

high value meals over T days. Additional meals can be purchased at price p once the student has

run out of free meal tokens. In this problem, the state (st) is the number of free tokens left at the

start of day t, the control (at) is whether to accept or reject the meal offered that day and the

disturbance (wt) is the stochastic value of the meal offered that day. If, on day t the student rejects

the meal, then the state remains unchanged, st+1 = st. If, alternatively, the student accepts the

meal, then the state transition depends on the availability of free tokens in the student’s account:

if free tokens are available (st > 0) then the student pays nothing and st+1 = st − 1; If not (st = 0)

then the state remains unchanged, st+1 = st = 0. Accepted meals increase the accumulated rewards

by x units (with x denoting the realization of X). Thus, if a meal is accepted the total net reward

increases by rt = x if st > 0, and by rt = x− p if st = 0.

Product Search Problem The Product Search problem is a variant of the classic secretary

problem with full recall. A college student wants to rent an apartment. There are T apartments

available in the market, and at each period the student can visit (search) an apartment at cost c.

The student wants to maximize their net profit, i.e. the value of the rented apartment net the total

cost of apartment search. The value of the apartment visited in period t is a random variableXt ∼ Ft

with the realization fully revealed after that apartment is visited. The search is with full recall; i.e. if

the student stops searching in period t, then the value received is Xmax
t =max{X1,X2, ...,Xt−1}. In

this problem the state (st) is defined by xmax
t (realization of the random variable Xmax

t ), the control

(at) is to stop searching or to continue, and the disturbance (wt) is the randomness in apartment

values. We focus on value distributions Ft ∼U [at, bt] where mean at+bt
2

is (weakly) increasing in t.

We choose uniform distributions with an increasing mean because they allow better identification

of decision policies, while being relatively straightforward to explain to experimental subjects.

3.3. Taxonomy of Decision Rules (Policies)

In Figure 1 we have briefly introduced the classes of decision policies examined in our study. These

policies synthesize the heuristics proposed in the previous literature with the type of rules described

by our experimental participants in exit surveys. Further, we restrict these policies to the ones that

can be adapted to different problem types, i.e. are not uniquely tied to any specific problem. Finally,

recognizing that our taxonomy may not be exhaustive, our data analysis will allow classifying a

participant as “Unidentified” if no policy achieves a good fit for that participant (See Section 5.1

for the classification procedure).
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At a high level, the examined policies fall into two categories: static and dynamic (Figure 1).

The static policies generally focus on one prominent feature of the problem, for example the length

of the time horizon, and use an ad-hoc rule based on that feature. Dynamic policies include the

optimal policy and several non-optimal policies: k-step-look-ahead (LKH), reoptimization heuristic

and break-even heuristic. These policies simplify some aspect of the problem, or use some logic that

responds to changes in the state and time, but fails to capture some important aspect of optimal

decision-making.

In the remainder of this section we present the mathematical formulations for each non-optimal

policy. We use one of the problem types to illustrate each policy. The optimal policies are straight-

forward to obtain via backward induction, have standard (threshold) properties and are provided

in Appendix A1. The remaining non-optimal policies are in Appendices A2 and A3.

3.4. Static Policies

We begin with the class of static policies. These are decision heuristics that, depending on the

specific rule, do not require the decision-maker to keep track of the state, or time period, or both.

Instead, they focus on a single prominent feature of the problem, and use an intuitive ad hoc

rule based on that feature. The feature can be value-based (for example, “Stop if reach value y”),

time-based (for example, “Always stop in period t”), or mixed. The categorization into value and

time-based decision rules originates in consumer search models (see Feinberg and Huber 1996, and

references therein). We adopt this categorization and examine the use of such rules across the

different problems in our study.

3.4.1. Static value-based heuristic Static value-based heuristics reduce the multi-period

optimization problem to a single period problem using a control on the value (reward) received in

each period. The idea is to approximate the main trade-offs of the dynamic problem by choosing a

time invariant action that balances expected total cost and benefit over the entire decision horizon.

This simplification dramatically reduces the cognitive burden because it only requires comparing

the observed values with a single number (“reservation value”) throughout the horizon.2

Example: Product Search The static value-based rule is to choose a target apartment value,

y, at the beginning of the horizon. The decision-maker stops searching as soon as the best apartment

value among the apartments searched is greater than or equal to y.

2 Static value-based approaches have been proposed by Caplin et al. (2011) to represent satisficing behavior when
evaluating each alternative is costly, by Borenstein (2009) to represent electricity consumption decisions and by Grubb
and Osborne (2015) to represent cellular service usage. In our data, subjects’ free-form descriptions of their decision
approaches reinforce static value-based policies as being both intuitive and common. For example many subjects
describe having a single target value they want to achieve, such as a subject in the Product Search problem that said
they “chose 69 or 70 every time, since they are in the middle of the values”.
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Figure 3 Static vs Optimal Policies: Product Search

Continue/Stop decisions resulting from policy 
(given sample path in exp. round 1)

The decision-maker can either choose an arbitrary target value, for example the midpoint of the

price distribution, or take a more sophisticated approach (while staying within the class of static

policies) and choose the “optimal” static value. If we define y(t) = E[max(X1,X2, · · · ,Xt)] then

there are N candidate target values y(t), t= 1, · · · ,N . The optimal target value can be found by

solving the following problem

max
t≤T

E[max(X1,X2, · · · ,Xt)− ct]

with the solution being given by t × y(t) = max{t : t ≤ T,E[max(X1,X2, · · · ,Xt)] −

E[min(X1,X2, · · · ,Xt−1)]≥ c}.3

Figure 3 demonstrates the differences between a static value-based heuristic (stop at value 70)

and the optimal policy for the parameter set used in the Product Search task. We also plot the

sample path resulting from the random variable realizations in one of the experimental rounds

(with green arrows indicating continuation and red arrows indicating stopping). As shown in Figure

3, a subject following any static policy would be easily identifiable because they would use the

same threshold throughout the task.

3.4.2. Static time-based heuristic Similar to value-based control, time-based control

ignores one aspect of the problem – the values observed by the decision-maker – and uses only the

time (period) information to make decisions. We illustrate the intuition of this heuristic again using

the Product Search problem. As before, the stopping period can be chosen ad hoc, for example the

3 One can find the corresponding target value by inverting the optimal time to stop to the target value
y(t∗)E[max(X1,X2, · · · ,X∗

t )]. Then the individual continues to search as long as max(X1,X2, · · · ,Xt) < y(t∗) and
stops otherwise.
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middle of the time horizon, or in a more sophisticated way. The best static time-based rule can be

found by solving the following problem:

max
t≤T

E[max(X1,X2, · · · ,Xt)− ct]

The solution is given by

t∗ =max{t : t≤ T,E[max(X1,X2, · · · ,Xt)]−E[min(X1,X2, · · · ,Xt−1)]≥ c}.

Note that unlike the value-based heuristic, t∗ is determined before observing any of the apartment

values, so that the decision to stop is independent of the actual values of the apartments observed

at t≤ t∗. As we will see later, this helps identification since a person who uses a value-based vs. a

time-based static heuristic would exhibit very different sequences of stopping thresholds.

The versions of static policies for the remaining two problem classes (Capacity Allocation and

Technology Adoption) are straightforward to derive and are presented in Appendix A. Additionally,

we also examine several other, interval-based static rules that are not defined for Search, for example

buying a laptop every s periods in Technology Adoption, or consuming a unit every s periods in

Capacity Allocation.

3.5. Dynamic Policies

3.5.1. Limited look-ahead policies (LKH) Under this class of policies the decision-maker

assumes that the game ends after the next k periods and makes optimal choices under that assump-

tion. If k = 0 the decision-maker is fully myopic and considers only current rewards and costs,

ignoring any continuation values. Similarly, if k= 1,2, ..., T − 1, the decision-maker determines the

best strategy by considering current and next period costs and rewards by re-solving a k-period

counterpart of the dynamic program at each period t < T .4

Example: Technology Adoption: When k= 0, this problem reduces to a single period deter-

ministic decision where we compare the net utility from adopting the currently offered technology,

u(t)− p with utility of current technology, u(n): Adopt if u(n) < u(t)− p, wait otherwise. Anal-

ogously, 1-step-look-ahead policy at time t with laptop version n is the solution to the following

optimization problem:

V 1
t (n) =max{u(n)+V 1

t+1(n), u(t)− p+V 1
t+1(t)}, V 1

t+1(n) =max{u(n), u(t+1)− p}.

4 Several versions of look-ahead policies, especially with k= 0, have been proposed as a myopic counterpart to forward-
looking optimization in supply chain settings (Lin et al. 2018), in revenue management and pricing (Aviv and Pazgal
2008, Gallego et al. 2008), and in queuing control (Hanukov et al. 2020). In our data, subjects would often specifically
mention how many periods they were considering. For example, a subject in the Technology Adoption problem said
they would “only purchase a laptop where the value increased significantly and where it would pay off its purchase
price in the next 3 periods.”
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Figure 4 LKH2 vs Optimal Policies: Technology Adoption

Upgrade/Do  nothing decisions 
resulting from policy 
(round 1 parameters)

Figure 4 demonstrates the differences between a look-ahead policy with k = 2 (LKH2) and the

optimal policy for the parameter set used in round 1 of our experiments. Note the strong contrast

between the policy predictions: the LKH2 policy is quite myopic and predicts no purchases in

the early periods. This is because the relatively low value increases in the early periods are not

sufficient to offset the purchasing price if one believes that the game would already end in two

periods. In this example, a subject following LKH2 policy would deviate from the optimal policy

in 6 out of 14 periods.

3.5.2. Reoptimization Heuristic The reoptimization heuristic transforms the optimization

problem to a single period problem at time t and state s using a control on the reward. Specifically,

the decision-maker updates the static value-based control at each period t= 1,2, ..., T by re-solving

the single period optimization problem of finding the best static value-based rule (introduced in

3.4.1). In other words, the policy reoptimizes the static threshold at each period taking into account

the current state of the system. Note that although the action is determined assuming a static

control for the rest of the horizon, the acceptance thresholds change over time, since the action is

updated in each period.5

Example: Capacity Allocation Suppose that there are T − t periods left until the end of the

horizon, and the decision-maker has k free meals remaining. To calculate the best static value-based

policy, at each t∈ T the decision-maker chooses the threshold q as follows:

max
q≤p

E[X|X > q]min((T − t)F̄ (q), k)+E(X − p)+
((T − t)F̄ (q)− k)+

F̄ (q)
.

5 In our data subjects often describe having an initial simple rule that they would adjust in future periods depending
on the outcomes. For example, a subject in the Capacity Allocation problem said that they “started with [accepting]
9,12,15” and then ”saw if I had 5 free meals by the tenth period, and calibrated accordingly.”
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Figure 5 Reoptimization vs Optimal Policies: Capacity Allocation

Accept/Reject decisions 
resulting from policy (given 
sample path in exp. round 1)

In other words, this approach replaces random meal values with their expectations, and transforms

the problem to a repeated single period optimization problem, where all meals arrive at once

and the decision-maker chooses the ones that are above a certain value. The decision-maker then

updates (“reoptimizes”) the threshold q in each period depending on remaining capacity. Figure 5

illustrates this approach and the resulting decision path relative to the optimal policy (under the

parametrization used in our experiments). In this example a subject following the reoptimization

heuristic would deviate from the optimal policy in 4 out of 20 periods.

3.5.3. Break-even Heuristic Another common simplifying approach is to identify a cost for

taking an action (e.g. purchasing in the Technology Adoption problem, consuming a meal in the

Capacity Allocation problem, or choosing to continue or stop in the Search problem). The decision-

maker then adjusts the threshold so that the value generated at least meets or exceeds that cost.

This is a forward-looking heuristic, as the threshold will naturally adjust over time based on the

state (e.g. the cost of consuming a meal in the Capacity Allocation problem will vary based on

how many periods there are left to go). Setting the break-even threshold is similar to accepting

a certainty equivalent in exchange for a risky alternative, and can also capture having a desired

value accrual rate (e.g. in the Technology Adoption example the increment in value earned each

period has to offset the purchase cost).6

Example: Technology Adoption If the decision-maker adopts technology u(t), their total net

utility from usage is (T −t)u(t)−p. If the decision-maker does not and instead keeps nth technology,

the total utility is (T − t)u(n). The break-even heuristic targets a non-negative net utility accrual

6 In our data, some subjects would describe their strategy as having a cost-based benchmark, such as a subject in
Technology Adoption saying they considered the “net cost in upgrading per turn remaining”.
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per period, i.e., a certain per period utility improvement that offsets its cost if used until the end

of the horizon. If the target accrual rate is any value greater than zero for the remaining time, the

policy can be stated as follows: Adopt the new technology if and only if the per period additional

benefit is larger than per period additional cost, u(t)−u(n)≥ p
(T−t)

.

4. Experiment Design

To examine the decision rules used by subjects in different types of dynamic environments we

conducted two laboratory studies. The treatments and tasks are summarized in Table 1.

In Study 1 we administered three tasks, one for each class of problems. Consistent with the

problem description in Section 3.2, each task was framed as a series of consumption decisions famil-

iar to college students. To identify the strategy used in each task we used the strategy elicitation

method, i.e. asked subjects to indicate an acceptance threshold (i.e. minimum meal value in Meal

Plan, and lowest accepted apartment value in Apartment Search) in each decision period.

In Study 2 we modified the original tasks to examine some of the mechanisms driving the

behaviors observed in Study 1. Specifically, Study 2 examines whether policy adoption is affected

by the following factors: the way in which the problem (action space) is presented, the sensitivity

of payoffs to the strength of the incentives, as well as the way in which payoffs accumulate. We

next describe the design of Study 1. Experimental instructions for each task, and screen shots of

each decision environment are in Appendix B. The design of Study 2 is described in more detail

at the beginning of Section 6.

Table 1 Summary of Treatments and Tasks

Study objectives Treatment Task 1 (4 rounds) Task 2 (4 rounds) # subjects

Study 1: Investigate
decision rules used in
different dynamic problems

1A Technology Adoption Product Search 77

1B Technology Adoption Capacity Allocation 79

Study 2: Investigate the
drivers of differences
between stopping/search
and other dynamic problems

2A Machine Replacement
Product Search with
continuous action space

43

2B Machine Replacement
Product Search with
stronger incentives

42

2C Machine Replacement
Capacity Allocation with
discrete action space

41

Note. Tasks were administered in reverse order for half of the sessions.
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4.1. Study Setup and Parameters

Study 1 included two between-subject treatments with two tasks per treatment (presented in ran-

dom order to control for order effects). In the first treatment 79 subjects worked on the Technology

Adoption task and the Product Search task. In the second treatment 77 participants worked on

the Technology Adoption task and on the Capacity Allocation task. We chose to expose each

subject to two tasks to examine the commonalities as well as potential differences in how human

decision-makers approach these dynamic problems.7

Participants were undergraduate and graduate students at a large, public Midwestern university.

Experiments were programmed in z-Tree (Fischbacher 2007). After the subjects completed the

dynamic tasks we elicited their risk attitudes using the multiple price list method (Holt and Laury

2002) and administered the Cognitive Reflection Test (CRT). We also asked subjects to verbally

describe the strategies they had used in each dynamic problem. Average earnings was $22, including

the show up fee of $7. Sessions lasted approximately 70 minutes and were conducted in person.8

All subjects completed four rounds of each task. We refer to “rounds” as complete iterations

of a task, not to be confused with “periods” in each dynamic game within a round. To be able

to identify general (as opposed to parameter-specific) patterns of behavior in dynamic systems we

used several sets of price and value parameters in the deterministic (Technology Adoption) task,

and several sets of realizations of the random variables in the stochastic (Capacity Allocation and

Product Search) tasks. Within each session, we fixed both the parameters and the realizations of

random quantities and controlled for those in our analyses, to reduce noise and be able to better

identify relevant behaviors (See section 5.1 for the details of our policy identification approach).

The specific parameters used in each task are reported in Appendix B.9

5. Experiment 1: Results

Below we present three sets of results. We begin by analyzing the sophistication of subjects’

decision-making approaches in each task. To do so, we characterize subjects based on whether

they are using a static or a forward-looking decision rule. Within these two categories we then

explore which specific rules and strategies are common in each task. Lastly, we examine the extent

to which decision rules generalize/are consistent within-subject (i.e. for the same decision-maker)

across different types of dynamic decision-making environments, and whether they are related to

individual measures of cognitive performance and to risk preferences.

7 We chose two rather than three tasks per subject to reduce the effects of fatigue on decision-making, while still
being able to observe within-subject behavior under multiple parametrizations/random draws.

8 Upon receiving the instructions, all subjects were required to pass a mandatory comprehension quiz. The majority
of the subjects (93%) passed the quiz on the first attempt. The remaining subjects received additional instructions,
after which they were able to pass the quiz.

9 Before conducting the experiments we performed Monte-Carlo simulations to choose parametrizations that would
lead to minimal overlap between different policies. This allows us to separately identify most policies. Details on the
simulation approach and analysis are available from the authors upon request.
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Figure 6 Study 1: General Sophistication by Task

Note. Figure shows the share of subjects in each task whose decisions are consistent with a static or forward-looking

decision approach. Subjects are classified as unidentifiable if they are neither static, nor sufficiently consistent with

any of the forward-looking policies (using 70th percentile of all consistency scores within a task as a cutoff for

identifiability). Assigning the unidentifiable subjects to the closest policy results in 94% (73%, 37%) of the subjects

being forward-looking in the Technology Adoption (Capacity Allocation, Product Search) tasks.

5.1. Sophistication of decision rules

We begin by examining general sophistication of decision rules in each task environment, i.e. the

extent to which subjects adopt static vs forward-looking rules. To do so, we first identify whether

each decision sequence is consistent with a static decision rule. A decision sequence is considered

static if it falls under one of the static rules described in Section 3.4. We classify a decision sequence

as static as long as there is no more than one deviation from a static rule. We then label a subject

as static if the subject used a static rule in at least three out of four of the experimental rounds.10

For subjects that do not appear to be static, we distinguish between subjects that match one of

our forward-looking policies, versus subjects that we don’t have a good descriptor for. To that end,

we compute for each subject, round and policy a “consistency score”, normalized to be between 0

and 1, to make the scores interpretable and comparable across tasks.11 Specifically, for each policy

p we calculate the total number of deviations in the observed sequence by subject i in round t

as ditp. We also compute the maximum empirically observed deviation dmax across all policies,

subjects and rounds. Then, the consistency score for each decision sequence is
dmax−ditp

dmax
, where

1 denotes maximal coincidence with the policy, and 0 denotes the largest possible deviation. To

10 Our main results are qualitatively similar with alternative cutoffs, e.g. zero or two (instead of one) deviations at
the decision sequence level, or four (instead of three) out of four rounds at subject level.

11 In our computations of consistency scores we exclude (i) decisions where more than two policies coincide, and
(ii) decision sequences in which subjects are observed at least once to do the opposite of the policy prediction, for
example if the policy is to increase the threshold, and the subject decreases the threshold instead. Neither of these
exclusion criteria results in substantive changes to the matching process. However, by leaving these decisions out the
consistency scores have a wider range and hence are more interpretable.
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Figure 7 Study 1: Learning in Each Task

determine whether a policy is a good descriptor we then use a cutoff equal to the 70th percentile

of all scores for that task. If no policy achieves a fit that is above that cutoff, we do not have a

good description of the decision sequence and classify it as “Unidentified”.12

Figure 6 shows the static/forward-looking/unidentifiable breakdown for each task. For all three

tasks, most subjects are taking a systematic, identifiable approach - with only between 7.6% and

16.9% of subjects being unidentifiable. We also see a clear split in each task between static and

forward-looking approaches to the problem. In the Technology Adoption task subjects are over-

whelmingly using forward-looking policies: approximately 83% of subjects use a forward-looking

strategy, with less than 6% using a static rule. We see a similar pattern in the Capacity Alloca-

tion problem. Approximately 70% of subjects are forward-looking, versus 13% are static. While

there are significantly fewer forward-looking subjects in the Capacity Allocation task relative to

Technology Adoption (test of proportions: two sided p= 0.020), the difference is relatively small in

magnitude. By contrast, subjects in the Search task show a very different pattern - approximately

63% of them use a static rule, and only 29% use a forward-looking strategy (p≪ 0.01 versus both

other tasks). This provides initial evidence that stopping problems may be structurally different

from other dynamic problems in the strategies they prompt, and that other task characteristics

such as stochastic versus deterministic do not seem to lead to such a sharp divide in behavior.

Figure 7 further breaks down each task by round, allowing us to consider two additional questions

related to learning. First, the share of unidentifiable decision sequences decreases in all three tasks

(Non-parametric trend tests: p= 0.000, 0.040, 0.000). The strong drop after the first round suggests

some initial experimentation and a convergence to approaches that are either static or forward-

looking. Second, there is some learning towards forward-looking strategies in Technology Adoption

12 The specific value of the cutoff was chosen in an iterative way, ensuring that (a) the number of unidentified
sequences was not too large in any task, and (b) subjects classified as unidentified earned significantly less than
subjects identified as forward-looking. Alternative values of the cutoff do not change any of our main results, since
the ranking of the policies would be preserved with a lower/higher cutoff.
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(Non-parametric trend test: p= 0.034), and towards static policies in Capacity Allocation (Non-

parametric trend test: p= 0.020). Overall however, the categorization as static or forward-looking is

remarkably consistent across rounds, with 64% to 88% of subjects remaining in the same category

in at least 3 of the 4 rounds. This suggests that when a subject approaches a problem they largely

stick with using a static or a forward-looking approach even as they gain more experience.

Before proceeding to more detailed analysis we briefly discuss whether the usage of

static/forward-looking approaches is related to the subjects’ earnings. As one may expect, devia-

tions from the optimal policy are negatively correlated with task earnings in all three tasks. We find

the strongest correlation in the deterministic Technology Adoption task (Technology Adoption:

ρ=−0.940, p≪ 0.01; Capacity Allocation: ρ=−0.571, p≪ 0.01; Product Search: ρ=−0.789, p≪

0.01). Indeed, subjects classified as optimal in Fig. 6 earned 2(5%) more than static subjects and

11(16%) more than unidentified subjects in the Technology Adoption (Capacity Allocation) tasks.

In contrast, subjects classified as optimal earned only about 1% more than static and 5% more

than unidentified in the Search task. To ensure that our results are not driven by the flatness of

the payoff function in the Search problem, one of the treatments in Study 2 ensures that subjects

would earn significantly lower payoffs if they deviate from the optimal policy.

5.2. Decision Rules Used in Each Task

Technology Adoption and Capacity Allocation For the Technology Adoption and Capacity

Allocation task, we have identified that subjects are primarily forward-looking. Our next step is to

further unpack behaviors in these two tasks to uncover which particular policies subjects are using.

Figure 8 examines the four policies that best describe the choices of forward-looking subjects. The

dark blue bars measure the descriptive accuracy of the top four policies in each task by looking at

the average consistency score of each policy. The light gray bars show the share of forward-looking

subjects that have each policy as their best match (i.e. highest consistency score).13

For both problems, the optimal policy is the second-best descriptor policy. For the Technology

Adoption problem, the optimal policy and look-ahead-3 (LKH3) policy both have a consistency

score near 0.72, with the two policies accounting for about three quarters of forward-looking sub-

jects. This is quite intuitive: the Technology Adoption problem is the simplest problem, making it

feasible for subjects to have decisions close to the optimum. Further, a large number of subjects

13 A substantial number of subjects (32% in Technology Adoption and 52% in Capacity Allocation) could be classified
as “mixed types” because more than one policy matches their strategy well (less than 5 percentage point difference
in consistency scores between the top two policies). For the majority of these subjects the two top policies show
substantive overlaps on the sample path chosen by the subject. For example, for subjects who are mixed optimal
and LKH3 in Technology Adoption, there is a 70% overlap in predictions on the sample path. For subjects who are
mixed optimal and reoptimization in Capacity Allocation, there is a 75% overlap in predictions. Hence, mixed types
are subjects that are well described by two similar policies, rather than splitting the difference between two quite
different policies.
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Figure 8 Study 1: Forward-looking Policies

Note. Four best descriptor policies for each task are displayed. Dark bars show the average consistency score for each

policy. Light bars show % subjects with each policy as their best match (i.e. highest consistency score).

adopt look-ahead policies. The Technology Adoption is a deterministic problem where subjects

know in advance the future path of values, making a look-ahead policy straightforward to com-

pute and useful. The last displayed policy, break-even heuristic does substantially worse, with a

consistency score well below 0.50, covering less than 5% of forward-looking subjects.14

For the Capacity Allocation problem we find that the two policies that best describe subjects are

the reoptimization heuristic and the optimal policy. The consistency scores of these two policies

are similar; however a larger portion of subjects have the reoptimization heuristic as their best

match. This matches the results of Leider and Şahin (2014), who also found that the reoptimization

heuristic and optimal policy did a good job of describing subject choices, but that between the

two, subjects were more likely to be closer to reoptimization. Further, there is a substantial drop

off in explanatory power after the top two policies, with very few subjects being best described by

the break-even heuristics or the LKH3 policy.

Together, these results show both the strengths and the limitations of modeling decision-makers

as using the standard optimal policy. On one hand, the optimal policy accurately describes a

substantial number of subjects for both tasks. On the other hand, the optimal policy is the best

descriptor for less than half of the forward-looking subjects (and hence even fewer of the whole

subject pool). For both tasks there is another policy that is capturing something about subject

behavior that the optimal policy is missing. Hence, a richer model that captures a more diverse set

of decision strategies may be a more accurate representation of decision-making. In Section 7 we

provide an illustrative example of how accounting for this heterogeneity can increase firm revenues.

14 As one may expect, LKH2 has a consistency score in between LKH1 and LKH3. However, LKH2 is the closest
match for only 2% of the subjects.
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Figure 9 Study 1: Static Decision Rules

Note. Frequency of static rules in the Search task. Left panel shows the frequency of each rule across rounds. Right

panel shows the frequency of subjects using one to four unique thresholds.

Robustness Check: Maximum Likelihood Estimation Our analysis so far has been based

on matching each subject to the policy with the highest consistency score (method described in

Section 5.1). In Appendix C we present the results from an alternative method based on policy

assignments that jointly maximize the likelihood of the observed choices (i.e. a Maximum Likelihood

Estimation approach). The MLE analysis suggests that the split among the policies is quite robust,

i.e., the ranking among the four top policies remains almost unchanged. Notably, the MLE results

confirm that in both tasks the optimal policy is the second best predictor and matches approxi-

mately a quarter to a third of non-static subjects. The policy with the largest share continues to

be LKH3 for Technology Adoption and the reoptimization heuristic for Capacity Allocation.15

Product Search In Section 5.1 we saw that the majority of subjects are using a static decision

rule in the Product Search task. Indeed, almost all of these subjects are using a fixed stopping value

(i.e. a value-based static rule, as opposed to a time-based static rule). Since the static thresholds

can be different for each subject and round, we are interested in the specific threshold values. The

left panel of Figure 9 shows the distribution of the thresholds for the subset of subjects identified as

static. The right panel shows how many unique thresholds each static subject used across rounds.

Several observations are in order. First, most subjects use value thresholds that are multiples of

five. Second, most subjects use more than one value threshold throughout the experiment. This

suggests that they are experimenting with different thresholds across rounds. Lastly, it is not the

case that static Subjects are primarily choosing the value threshold that will yield the highest

15 We do not use MLE to estimate the proportion of policies in Product Search because most subjects are static in
that task, and the number of possible static policies is quite large relative to the number of subjects. Many subjects
essentially use a unique static threshold, as illustrated in Figure 9.
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Table 2 Correlations Between Optimality and Individual Variables and Across Tasks

Average deviation from optimal Task earnings

Technology
Adoption

Capacity
Allocation

Product
Search

Technology
Adoption

Capacity
Allocation

Product
Search

Demographics
Age -0.063 0.061 -0.084 -0.067 0.037 -0.084
Gender (f=1) 0.044 0.194* -0.086 -0.072 -0.111 0.048
Engineering Major -0.233*** -0.246** -0.082 0.260*** 0.142 0.145
CRT score -0.307*** -0.096 -0.183 0.302*** 0.329** 0.112
Risk-aversion 0.001 0.072 -0.016 -0.060 0.064 -0.077

Cross-task correlations Capacity
Allocation

Product
Search

Capacity
Allocation

Product
Search

Technology
Adoption

0.099 0.280** Technology
Adoption

0.306*** 0.233**

Note. Pearson coefficients are displayed. *, **, *** denote significance level of 0.1, 0.05, 0.01, respectively. CRT (Cognitive

Reflection Test) score is the number of correct responses (out of three) on the standard CRT test. Risk aversion is measured

using the Multiple Price List method (Holt and Laury 2002).

average payoff. For the parameter values used in the experiment, given that a subject is using a

static value threshold a higher threshold will yield a higher average payoff. While we do see a large

number of subjects use the highest threshold of 85, the most common thresholds is 70. There is

not an overall monotonic trend of larger thresholds being more common, nor is there a systematic

trend for thresholds to either increase or decrease across rounds (p = 0.523). This suggests that

static subjects are not systematically identifying and using the “best” static threshold (nor are

they learning to). Rather, they appear to be using a simpler (and cognitively cheaper) approach

of choosing focal, round threshold values throughout the task.16

5.3. Individual Markers of Performance and Cross-task Comparisons

Our last research question is what makes someone more or less forward-looking, and whether

people’s strategies are similar across tasks. Our analysis is summarized in Table 2. The top panel

of Table 2 shows Pearson correlation coefficients and their significance level for the relationship

between individual marker variables and subject-level adherence to optimal policies and subject

earnings. The bottom panel shows cross-task comparisons.

Several observations are in order. First, both policy adoption and performance in the Technology

Adoption task are significantly related to college major and to the Cognitive Reflection Test (CRT)

score (at p < 0.01). This suggests that performance on that task can be predicted reasonably well

16 It is plausible that the size of the threshold value is aligned with the subject’s risk appetite, i.e. more risk-averse
subjects may choose to stop sooner than more risk-loving ones. To test this conjecture we examined the correlation
between thresholds and our measure of risk preferences (elicited after the dynamic task was completed), but found
the correlation to be not significant.
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by the analytical capabilities and by the analytical training of the participant. Similarly, policy

choice in the Capacity Allocation task is directionally related to both major and CRT score,

but not all relationships are significant at p < 0.05. In contrast, policy adoption and earnings

in the Product Search task appear to be unrelated to the demographic variables.17 Lastly, the

bottom panel of Table 2 suggests that adherence to optimal policies is significantly correlated for

Technology Adoption and Search (p= 0.012) but not for the other pair of tasks; however, earnings

are correlated for each pair of tasks (p < 0.01, p= 0.038).

How do these results inform our understanding of behavior in dynamic decision problems? First,

policy adoption may be a function of one’s analytic capabilities for simpler tasks, in which the

optimum can be computed with some effort (as is the case in our deterministic Technology Adoption

task). However, policies are less strongly related to simple measures of analytic fluency in more

difficult tasks that involve trade-offs under uncertainty (as is the case in our Capacity Allocation

and Product Search task). Second, the extent to which people adopt similar strategies across tasks

varies. When multiple well-performing policies are available, people may adopt different policies

in different tasks. For example, reoptimization heuristic is both popular and quite profitable in

Capacity Allocation, and is used by many people who use an optimal approach in the Technology

Adoption task. That is, someone may be using two different forward-looking policies in two different

tasks. Lastly, while policies may differ, earnings are correlated across tasks; that is, performance

on one dynamic task may be indicative of performance on another one.

6. Study 2

The purpose of Study 2 was to further unpack behaviors in dynamic environments, specifically the

differences between the (predominantly static) decision rules used in the Product Search problem

and the (predominantly forward-looking) rules in other dynamic problems.

To determine what drives this result we explore several potential explanations. One possibility

are the differences in reward functions (payoff accumulation). Product Search is a stopping problem,

and thus implies a single large payout once the decision-maker stops; in contrast, the other dynamic

problems involve a cumulative payoff function that collects many small payoffs from multiple

decisions. The differences in the accumulation of payoffs may prompt different approaches to solving

the problem. Another possibility is that the differences are caused by the elicitation process/action

space of the task (See Figures B.1-B.3 in the Appendix). In the Search problem we asked subjects

to enter an integer number, while the remaining tasks involved either yes/no decisions (Technology

Adoption task), or check boxes (Capacity Allocation task). Finally, expected payoffs in stopping

17 We also examine correlations between performance and other (non-Engineering) college majors and find no signif-
icant relationships with either of the three tasks.
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problems can be relatively insensitive to deviations from the optimal policy (Seale and Rapoport

1997). Thus, a further possibility is that the simpler decision rules in Search are a result of a lack

of a strong financial incentive.

These mechanisms are investigated in Study 2 in three between-subject treatments. As in Study

1, in all three treatments subjects work on two tasks (see Table 1). In all treatments participants

play four rounds of a new stopping problem, the ”Machine Replacement” problem. As in our

previous tasks, in the experiment we use a framing more familiar to subjects - deciding how

long to drive a used car before selling it. In this problem subjects iteratively choose between two

alternatives: to continue driving a used car (earning a small payment but risking the car breaking),

or to stop and sell the car (earning a large payment and ending the task). The basic structure of

this problem is similar to the classic finite horizon version of the machine or equipment replacement

problem, see for example, Meyer (1971), Sethi and Chand (1979).18 The per-period payoff for

driving and the payoff for selling are fixed throughout the horizon. The probability of the car

breaking increases over the horizon, and if the car breaks the opportunity to sell the car is lost.

Across the four rounds, the decision horizon varies with either T = 15 or T = 20.19

This Machine Replacement task shares the stopping problem structure with the Product Search

task from Study 1, but has incremental payoffs, similar to the Technology Adoption and Capacity

Allocation tasks. If participants use static decision rules in the Machine Replacement problem,

then the primary driver of policy sophistication is the nature of stopping problems versus other

dynamic decision problems. If not, then the primary driver is the accumulation of payoffs (single

payoff vs. many small payoffs).

In addition to the Machine Replacement problem, subjects played four rounds of a variation of

one of the games used in Study 1, designed to test possible alternate mechanisms. As before, the

task sequence was reversed in half of the sessions to control for order effects. In the first treatment

subjects worked on a version of the Product Search problem, in which their threshold was elicited

using yes/no check marks, instead of having to enter the exact threshold for acceptance. In the

second treatment, subjects worked on the original Product Search problem, parametrized to yield

18 Basten and Tan (2021) use a similar experimental task with a machine maintenance framing, with varying costs
for machine failure and rates of machine degradation.

19 In designing the Machine Replacement problem we focused on having a clean separation between sophisticated
and non-sophisticated heuristics (to evaluate the robustness of our results from Study 1). However, this means that
we are not able to distinguish between many of the forward-looking policies. Specifically, all three limited look-ahead
policies coincide with the optimal policy, as does the reoptimization heuristic. This is because there is no changing
state variable other than the current time period, hence the myopia of the limited look-ahead and the simplification
of reoptimization do not lead to different policies.
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Figure 10 Study 2: Frequency of Stopping in Machine Replacement

Failure, 
never 

stopped

No Failure, 
never 

stopped

Failure, 
never 

stopped

No Failure, 
never 

stopped

Frequencies predicted 
by optimal policy

Observed frequencies

Note. Histograms show the share of subject-rounds with each possible outcome: having a failure before selling, selling

in a given period, or not selling. The optimal strategy is to only sell in the last period; the dotted red boxes denote

the expected frequencies under the optimal policy given the realizations of random quantities in each session.

a larger gap between the payoff resulting from the optimal and the next best solution.20 In the

third treatment subjects worked on a revised version of the Capacity Allocation task, in which

the accept/reject decision was elicited via a continuous threshold number entered by the subject,

as opposed to a list of yes/no check boxes used in Study 1. The parameters and realizations of

random quantities were kept similar with the corresponding treatment in Study 1.

A total of 126 subjects were recruited to participate in Study 2 (See Table 1 for the exact subject

numbers). We recruited subjects from the same student subject pool who did not participate in

Study 1. No significant differences in age, gender or college major were found between Study 1 and

Study 2. The setup, instructions and experimental procedures in Study 2 were similar to Study 1

and are omitted for brevity. The tasks, objectives and exact participant numbers are summarized

in Table 1. The parameters used in Study 2, as well as screen shots of the decision screens are

reproduced in Appendix D.

6.1. Experimental results

Machine Replacement Figure 10 shows the distribution of outcomes in the Machine Replace-

ment problem. For the parameters used, the optimal policy is to continue driving until the last

20 Specifically, if a decision-maker followed the optimal policy for this new parametrization of the problem, their
expected earnings would be 2.09% higher than the ex ante best performing static policy, and 21.25% higher than
an average across the five most common static policies used in Study 1. This is a substantially larger difference in
payoffs between more versus less sophisticated policies than in Study 1. For the original parametrization, the optimal
policy gives an expected payoff 0.01% higher than the ex ante best static policy, and 3.57% higher than the average
across the five most common static policies. Additionally, to further increase incentive strength we also increased the
point-to-dollar conversion rate by a factor of five.
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period, so participants following the optimal policy would either experience a failure, or sell in the

last period. The red shaded dashed bars denote the expected number of failures if all participants

followed the optimal policy, and the expected number of sales in the last period. We see that

instead approximately half of the subjects are choosing to stop sooner than optimal - selling in

earlier periods, with the mean sale period occurring near the mid-point of the task.

We now turn to identifying the decision policies in the Machine Replacement problem. The

identification is quite straightforward because the optimal actions are unambiguous: subjects should

sell only in the final period; however, the data are censored because we often observe a failure

before the last period and hence may not know what a subject would have done in the later stages

of the problem. We therefore identify strategies by looking at behavior across all four rounds of the

task, such that at least some rounds yield a (near-)complete sequence of the subjects’ decisions.

We identify subjects as “optimal” if they have at least one sale in the final period, and no sales

in an earlier period. This (conservatively) identifies 10% of subjects as acting consistent with the

optimal policy. Subjects’ whose decisions are closer to the optimal policy (as measured by the

consistency score) do earn significantly higher earnings (correlation with earnings: ρ= 0.516, p <

0.01). Static policies are identified for participants that consistently choose to stop and sell at a

given period (or percent of the task length), or at a given failure probability. We identify 41% of

subjects as using such a static decision rule. For most static subjects we cannot distinguish between

having a time-based or failure probability-based rule, however for those that can be distinguished

there are more than 2.5 times as many subjects following a probability-based rather than a time-

based rule.21 There are another 31% of subjects with at least two informative sequences (i.e. sales

and/or failures later than observed sales) whom we can rule out as either static or optimal but who

increase their average stopping period between the T = 15 and the T = 20 rounds. While this is

broadly consistent with the break-even policy, only 1.6% of subjects are observed choosing to sell

in a period close to the predicted round.22 Finally, there are 18% of subjects for whom we do not

have enough data to make any clear categorization. Overall, the high share of static subjects and

low share of optimal subjects is more consistent with the pattern observed in the Product Search

task of Study 1 than with the Technology Adoption or Capacity Allocation tasks.

Policy Comparison Between Studies Figure 11 shows the share of subjects identified as

static or as forward-looking in each task of the experiment (Study 1+2). Several observations are

in order (all statistical comparisons are based on two-sided tests of proportions).

21 We note that, as in the Search problem, subjects are not choosing the “best” static policy (which would be to
continue until the last period), but are choosing to stop much earlier.

22 The only non-optimal, forward-looking policy that is separately identifiable in this task is the break-even policy,
which predicts stopping in period 8 for T = 15 and in period 18 for T = 20.
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Figure 11 Study 1 and Study 2: Policy Sophistication

First, eliciting choices using a continuous threshold or discrete decisions makes very little differ-

ence. The two versions of the Capacity Allocation problem (columns 2 and 3 in Figure 11 have very

similar strategy profiles, with few static subjects and a high share of forward-looking subjects (n.s.

for both comparisons). Similarly, both versions of the Product Search task have a similar strategy

profile, with quite low shares of forward-looking subjects (n.s. for both comparisons).23

Second, the strong incentives parametrization of the Product Search task does shift subjects

towards more sophisticated strategies. Specifically, we observe less than half as many static subjects

as in the original Product Search task (p≪ 0.01), and more than twice as many forward looking

subjects (p= 0.012). Compared to subjects in the original task, subjects in the strong incentives

task were less likely to set a stopping threshold above the possible realizations (guaranteeing not

to stop) deep into the task. In the strong incentives treatment, period 6 is the latest period where

more than half of subjects set a threshold to guarantee continuing, while in the original treatment

this is true for the first 10 periods. Subjects in the strong incentives treatment were also more

likely to make small to medium sized changes to their stopping threshold (relative to the possible

value realizations), while in the original task subjects tended to make either no change, or a large

change. As we intended, there was also a stronger association between strategy sophistication

and earnings than in the original task. Specifically, subjects’ average deviation from the optimal

policy was strongly negatively correlated with earnings (ρ=−0.75, p≪ 0.01); subjects identified as

forward-looking earned 11.8% more than subjects identified as static (Rank sum test, p= 0.049).

23 The high share of unidentified subjects in Discrete Search is due to many subjects stopping immediately in the first
stage of the search (27.9 % of all decision sequences), so that identification relies on fewer observations per subject.
This is because with the discrete format, the smallest possible probability of acceptance, if the subjects chooses to
accept any values, is 20% (since there are five discrete alternatives). Thus the data are more “lumpy” with discrete
elicitation relative to the continuous format.
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While sophistication increases with incentive strength, we still see all of the stopping problems

leading to less sophisticated approaches than each of the non-stopping problems. Both the original

and discrete Product Search tasks have both significantly more static subjects and significantly

fewer forward-looking subjects than each of the three non-stopping problems (p < 0.01 for all

comparisons). The Machine Replacement problem has significantly fewer forward-looking subjects

(p < 0.032) and significantly more static subjects (p < 0.01) than all three non-stopping problems.

The strong incentives Product Search problem has fewer forward-looking subjects relative to Tech-

nology Adoption (p < 0.01), although the reduction relative to the other non-stopping tasks is

marginally significant (p= 0.054 and p= 0.086). Hence we conclude that while certain features of

the task can lead to some variations, notably the monetary returns to using forward-looking poli-

cies, there is a robust tendency for stopping problems to lead subjects to choose simpler decision

rules.

Lastly, comparing subjects’ strategies and earnings across the two tasks, we find quite similar

results to Study 1. The correlation between a subject’s deviation from optimality between Machine

Replacement and the other tasks are all quite small and not statistically significant (ρ < 0.20 and

p > 0.20 for all). However, subjects’ earnings on the Machine Replacement task are significantly

correlated with both the strong incentives Product Search task (ρ= 0.37, p= 0.017) and the con-

tinuous Capacity Allocation task (ρ = 0.48, p < 0.01). The earnings correlation with the discrete

Product Search is essentially zero (ρ= 0.01, p= 0.948). Thus, as in Study 1 there is a relationship

between a subjects’ ability to achieve high earnings across tasks, but not necessarily the sophisti-

cation of the strategies they use to do so.

7. Discussion and Implications

In this section we present a broader discussion of our results and offer some implications, both for

researchers interested in developing more descriptive models of dynamic decision-making, and for

managers designing firm policies for consumers who face dynamic trade-offs.

Stopping vs. non-stopping problems Our first result is the striking difference in policy

adoption between different dynamic decision problems. Stopping problems like our Product Search

and Machine Replacement task lead most subjects to static decision rules, while non-stopping

problems lead to more sophisticated forward-looking policies.

A natural question is what causes this difference. While our data do not directly speak to this,

one speculative possibility seems both plausible and intuitive. Stopping problems have one focal

decision point (the point of stopping), and that may prompt people to focus on a single key outcome:

what would be a good target value to stop at in Product Search, or what breakdown percentage

would be sufficiently high to prompt a sale in the Machine Replacement task? Focusing on the
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desired end state may predispose people towards static decision rules that achieve that state. By

contrast, other dynamic problems involve many similarly important decisions (for example none

of the ten uses of the free meals in the Capacity Allocation problem is likely to loom larger in

importance than any other). This may prompt people to take a more holistic view on the problem,

i.e., a focus on how to use their resources well, rather than any particular end state.

Optimal policy fit Our second result is that even for non-stopping problems simpler heuristics

may be a better fit for many subjects than the optimal policy. Indeed, less than half of the forward-

looking subjects (and hence even fewer of the whole subject pool) have the optimal policy as their

best descriptor. Models of behavior that try to explicitly account for this heterogeneity may be

more realistic, and may also help firms increase profitability. The following example illustrates the

consequences of modeling a heterogeneous market of consumers as a single, optimal type.

Consider a firm offering a three part tariff (fixed fee, free units, fee per unit after free units are

used) to sell its services. The firm can be, for example, a car dealer designing the terms of a lease

on a new car, or a gym offering a new subscription for classes. Any consumer that accepts the

terms of the contract and pays the fixed fee faces a sequence of decisions similar to our Capacity

Allocation task. If the firm believes that everyone in the market is an optimizer, it should offer the

following three part contract: a fixed fee of $136, 5 free units and a per unit fee of $6 (Column 1 in

Table 3). Using a more realistic (given our data) two type split of consumers into static (30%) and

reoptimization heuristic (70%) types, this contract would generate an expected total revenue of $130

as only reoptimization types would purchase this contract. Similar calculations lead to an expected

total revenue of $189 ($141) if the firm wrongfully assumes that the market consists wholly of static

or reoptimization types (Columns 2 and 3 of Table 3). On the other hand, correctly anticipating

the presence of both types leads to a menu of two incentive compatible contracts designed for each

type, resulting in average total revenue of $194. In this example, the revenue increase for offering

a menu designed for two types, instead of assuming a single type, can be as high as 49% (last

row of Table 3). Overall, this example illustrates that building models with more accurate and

empirically grounded assumptions of the nature and heterogeneity of consumer decision types can

lead to substantially different outcomes. Conversely, acting as if all consumers are optimal, or even

that all consumers are forward-looking, can lead to foregone revenue opportunities.

Cross task correlations and individual markers Our last main result is that subjects seem

to differ in their general ability to perform well at dynamic decision problems, as measured by

the correlation in earnings across tasks. However, this is not reflected in a consistent ability to act

close to the optimal policy. High-performing subjects seem to be performing well using different

strategies in different tasks, rather than consistently using a sophisticated strategy close to the
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Table 3 Revenue Management Application Example

Contract optimized for single type Contract menu

Optimal Static Reopt. Static Reopt.

Contract parameters:

Fixed fee $136 $133 $193 $133 $183
# free units 5 5 15 5 15
Per unit fee $6 $6 $6 $6 $12

Total expected revenue
(assuming 30/70 type split)

$130 $189 $141 $194

Increase in expected revenue
(From offering the menu)

49.01% 2.52% 37.40% -

Note. Calculations assume that there are 30% Static and 70% Re-optimization types in the market, that the firm chooses between
5 and 15 free units and chooses a per unit fee in [0,∞). Unit value distribution, horizon length and the remaining parameters are

the same as in the Capacity Allocation task in Study 1, with a 1-to-1 point to dollar conversion rate (See Appendix A). Dollar

values are rounded to the nearest integer.

optimal policy. Taken together, these results suggest that strategy choice in dynamic environments

depends on the features of the problem: people may base their approach on the (cognitive) cost

and the monetary benefit of using the optimal policy relative to other decision rules.

Finally, performance on a basic measure of analytic intelligence, the Cognitive Reflection Test,

was significantly related to performance in the simplest task (Technology Adoption), but was less

predictive of performance in more complex tasks. This result is somewhat similar to the “Threshold

hypothesis” (Sawyer 2011, Jauk et al. 2013) – a classic theory in the creativity literature stating

that the relationship between intelligence and creativity is linear for simpler creative tasks but less

pronounced for higher-level creative endeavors. Similarly, analytic intelligence may be a necessary,

but not a sufficient condition for being able to correctly solve more complex dynamic decision

problems.

8. Concluding remarks

Many important operational settings involve dynamic decision problems, where choices have both

immediate consequences and implications for the future. Making sophisticated choices, and partic-

ularly near-optimal choices in such settings is often complicated and cognitively demanding. Past

behavioral research has explored human decision-making across a range of settings, identifying

common heuristics and deviations from optimal choice. However, to date there is not yet a bound-

edly rational framework to describe typical behavior across a range of settings with the breadth and

generality as with, for example, behavioral models of decision-making under uncertainty (prospect

theory and reference-dependent preferences), time discounting, or social preferences (models of

inequality aversion and social norms). This paper sets an initial step towards such a framework,
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by examining choices across four distinct dynamic decision contexts, designed to identify and dis-

tinguish a common set of decision policies of varying sophistication.

We identify several behavioral regularities that can form the basis for future development of

a general behavioral model of dynamic decision-making. First, decision sophistication is sharply

different between stopping and non-stopping problems. Subjects are substantially more likely to

use simple static decision rules for stopping problems and to use sophisticated forward-looking

heuristics (including some acting nearly-optimally) in non-stopping problems. Second, for stopping

problems, the most common static policies relate to salient features of the problem, such as the

apartment value in the Product Search problem and the failure risk in the Machine Replacement

problem. For non-stopping problems, the look-ahead policy is the most common heuristic used in

the simpler Technology Adoption problem, while the reoptimization heuristic is the most common

for the Capacity Allocation problem. Finally, while subjects’ earnings are correlated across tasks,

suggesting some general ability to effectively solve dynamic decision problems, policy usage is not

correlated across tasks.

These results suggest several avenues for future research. First, with the available data we can

only speculate about the psychological drivers of the difference in approaches between stopping

and non-stopping problems. One plausible explanation is that stopping problems are characterized

by having one important key decision (when to stop) while non-stopping problems typically have

many decisions of similar importance. Future experiments could verify this intuition and directly

manipulate/nudge decision-makers towards being more outcome-focused or more holistic in their

approach. Second, our study offers only preliminary insights into the types of cognitive abilities

that enable subjects to perform systematically better across tasks. Future studies may be able to

identify better predictors of performance by supplementing the Cognitive Reflection Test with other

diagnostic measures (such as pattern completion and working memory tasks used by Ballinger et al.

(2003, 2011)). Finally, our experiments focused on one aspect of complexity of a dynamic decision

problem: the need to be forward-looking and consider both the present and future consequences

of a choice. Future research could explore general features of how decision-makers construe and

simplify other aspects of complexity - such as the stochastic evolution between problem states, or

the construction of a consideration set from a complex set of actions.
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Appendix

A. Policies

In this Appendix, we state the optimal and the applicable non-optimal policies for each problem. Policies

that are not applicable for certain tasks are omitted.

A.1. Optimal policies

Optimal Policy for Technology Adoption Problem We define Vt(n) as the optimal total utility from

t to T starting with technology version n≤ t of the product:

Vt(n) = max{do nothing, adapt new technology}

Vt(n) = max{un +Vt+1(n), ut − p+Vt+1(t), t < T}

VT (n) = max{un, uT − p}

Since the problem is deterministic, it is straightforward to show that the decision-maker adopts the new

technology at time t with starting technology n if the utility of the new technology is greater than a threshold

yt(n). The threshold depends on the remaining schedule of technology improvements and price of adopting

new technologies.

Optimal Policy for Capacity Allocation Problem We can write the dynamic programming formula-

tion and the value function Vt(k) as

Vt(k) = E[max{accept meal, reject meal}]

Vt(k) = E[max{X +Vt+1(k− 1), Vt+1(k)}], 0<k≤C, t < T

Vt(0) = tE[X − p]+, t≤ T

Leider and Şahin (2014) show that the optimal policy is a threshold policy where the student accepts the

meal at time t if and only if the value of meal is greater than the opportunity cost of free meal at time t

with k units of free meals: X ≥ Vt(k)−Vt(k− 1).

Optimal Policy for Product Search Problem We can write the dynamic programming formulation

and the value function Vt(x) as

Vt(x) = E[max{rent the max utility (x) apartment , continue search}]

Vt(x) = E[max{max(Xt, x)− tc, Vt+1(x
max
t )}], t < T

VT (x) = E[max{max(XT , x)− cT,0}]

where xmax
t =max(xmax

t−1 ,Xt).

It is straightforward to show that the optimal policy is a threshold policy where the student rents the

apartment at time t if and only if xmax
t ≥ yt, where yt is increasing in t (see, for example Cox and Oaxaca

1989, for a derivation).
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A.2. Static Policies

Value-based Heuristic for Technology Adoption Problem Decision-maker adopts a new model in

period t if utility improvement of technology introduced at time t (ut) compared to the utility of laptop

currently owned (st) is greater than a threshold q. Formally, we can state these types of policies as adopt

new technology if and only if ut − st ≥ q.

Time-based Heuristic for Technology Adoption Problem Decision-maker adopts a new model every

n≤ T periods regardless of the utility of the new models introduced.

Value-based Heuristic for Capacity Allocation Problem A decision-maker may choose a static

threshold q based on an ad-hoc rule. In this case, value-based heuristic takes the form: Consume meals

that have value greater than q, do not consume otherwise. Alternatively, the decision-maker may choose

the “best” (highest expected profit) static rule. If the decision-maker has k tokens at the beginning of the

horizon to be consumed in T periods, then the best static value-based requires solving

max
q≤p

E[X|X > q]min(T F̄ (q), k)+E(X − p)+
(T F̄ (q)−C)+

F̄ (q)

Notice that in this heuristic approach, student balances the expected total number of meals and total

reward received over T days with the expected overage cost paid to the provider. This heuristic replaces the

random number of meals with their expectation, and the decision-maker chooses the meals that are above a

predetermined state independent value. Solving the optimization problem gives a static threshold qS(k,T ) to

be used until all free units are used. When all free units are used, the decision-maker starts rationing meals

based on the unit cost of the meal, p. The optimal static threshold is given by

qS(k,T ) =min{min{q|F̄ (q)≤ k

T
}, p}.

Time Based Heuristic for Capacity Allocation Problem A time-based heuristic for Capacity Allo-

cation implies consuming all meals independent of their values in the first n periods. As with the value-based

static heuristic, n can be chosen “optimally” to obtain the best balance between under- and overconsumption.

A.3. Dynamic Policies

k-step-look-ahead Policies For all three problems, k-step-look-ahead policies can be obtained by mod-

ifying the optimal dynamic programming formulations stated above for T periods. Instead of solving the

T -period problem, decision-maker solves the k-period dynamic program optimally at time t≥ k, and t-period

dynamic program optimally at time t < k.

Reoptimization Heuristic for Product Search Problem In period t= 1,2, ...T − 1, use the optimal

static value-based rule (updating it depending on state and time to go).

Break-even Heuristic for Capacity Allocation Problem With k free meal tokens to be consumed in

the remaining t periods and a consumption threshold of v or above, the decision-maker’s total net utility is

min((tP (V ≥ v), k)E[V |V ≥ v]. With no free meals in period t, the decision-maker would consume meals of

value p and above which would cost p(tP (V ≥ p). So, the break-even heuristic finds the certainty equivalent

meal value that makes the net utility in t periods equivalent to the net cost if free tokens are not available,
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i.e., a certain per period utility improvement is expected so that free tokens pay off at least their cost if used

until the end of the horizon. If target accrual rate is any value greater than zero for the remaining time, the

policy can be stated as follows: Consume meal in period t if meal value is greater than the minimum v that

solves min((tP (V ≥ v), k)E[V |V ≥ v] = ptP (V ≥ p).

Break-even Heuristic for Product Search Problem In period t, if best apartment searched has value

xmax
t , and expected value of the next apartment that will be searched is E[Xt+1], then the decision-maker

stops searching if expected value from searching the next apartment is higher than the cost of search:

E[Xt+1]−xt ≥ c.

B. Study 1: Experimental Instructions and Screen Shots

Technology Adoption Task

This part of the experiment will involve the Laptop Purchase Task. In this task you will make a series of

purchase decisions. There will be 14 periods, and in each period a new laptop model will be introduced. Each

laptop model has a performance score - the higher the score the more valuable is the laptop to you. In some

periods the performance score will remain the same as before. In other periods the performance score will

improve relative to the previous period.24

At the beginning of the task you will receive the release schedule with the performance scores of each

laptop model. Each time a new laptop model is introduced you will be asked whether you want to purchase

it (replacing your current model). Each time you purchase a new laptop you will be charged its price. For

example, suppose you currently have a laptop with a performance score of 10. The performance score of the

new model introduced this period is 13. The price of the new model is 6.

If you choose not to purchase, you will:

- spend no money.

- earn 10 points this period (your current laptop performance score).

- start the next period with your current 10-score laptop.

If instead you choose to purchase, you will:

- spend 6 points.

- earn 13 points this period (the new laptop performance score).

- start the next period with the new 13-score laptop.

The first laptop will be given to you for free. After that you will make 14 decisions. Each time you will be

asked whether or not you want to purchase a new laptop, introduced in the current period. Your overall

payoff will consist of the sum of the performance score values of the laptops used in each period, minus the

24 The instructions and sample screens have been abbreviated with quiz and example portions of the instructions.
The exact sequence of screens as seen by participants, as well as the quiz questions, can be downloaded under
https://bit.ly/2sPwk18.

https://bit.ly/2sPwk18
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charges for each purchase. For example, suppose each model costs 6 points. Then, if you have purchased

a 10-score laptop in period 1, and a 13-score laptop in period 6, your total payoff in this task will be:

10× 5+13× 9− 6× 2 = 155 points, or $7.75.

Laptop performance scores and price (in points):

Year 0 (free of charge): 1 point,

Year 1: 6 points

Year 2: 8 points

Year 3: 9 points

Year 4: 9 points

Year 5: 9 points

Year 6: 11 points

Year 7: 12 points

Year 8: 13 points

Year 9: 14 points

Year 10: 14 points

Year 11: 14 points

Year 12: 15 points

Year 13: 15 points

Year 14: 19 points

[Example and quiz screens]

Capacity Allocation Task

This part of the experiment will involve the Meal Plan Task. For this task you will have a meal plan. Your

meal plan will specify how many free meals are included with it. If you use all your free meals, you will still

be able to purchase meals at the regular price (which will be specified later). You will make 20 decisions,

one for each meal. Each time you will be asked whether or not you accept or reject the meal offered to you.

Not all meals have the same value - each meal will have a distinct value describing how much it is worth to

you. In particular, meals will have the following values:

15 points with probability 15%

12 points with probability 25%

9 points with probability 25%

6 points with probability 25%

3 points with probability 10%
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To help visualize the value probabilities, imagine that there is a bucket full of 20 balls. Two balls have 3

written on then, Five balls have 6, Five balls have 9, Five balls have 12, and Three balls have 15. Determining

the value of a meal would then be like picking one of the balls randomly, assigning that value to the meal,

and then putting the ball back.

In each period you choose which meal “types” you want to accept and which ones you want to reject.

- If your decision for a given meal ”type” is to reject, then your payoff will remain unchanged and you

will move to the next period.

- If your decision for a given meal ”type” is to accept, then the value of that meal will be added to your

earnings.

The payment for each meal will depend on the number of free meals remaining in your plan. The payment

for each meal will be:

- one free meal unit (if you have free meals left).

- the price of that meal (if you do not have any more free meal units left).

[Example and quiz screens]

Product Search Task

This part of the experiment will involve the Apartment Search Task. Your goal in this task will be to find

an apartment to rent. During the task you can visit up to 15 apartments to assess their value (e.g. size and

amenities relative to rent). As you conduct the search you gradually become more familiar with the city and

its neighborhoods and get better at identifying good apartments. Thus, the longer you search, the higher

the apartment values you can expect to see.

In particular, you expect the apartments to have the following values:

Apartment 1: 60 points

Apartment 2: 60 points

Apartment 3: 62 points

Apartment 4: 64 points

Apartment 5: 66 points

Apartment 6: 68 points

Apartment 7: 68 points

Apartment 8: 68 points

Apartment 9: 70 points

Apartment 10: 72 points

Apartment 11: 74 points
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Apartment 12: 76 points

Apartment 13: 78 points

Apartment 14: 80 points

Apartment 15: 82 points

Note however, that these values are not known with certainty at the beginning of the task - they are estimates,

based on your best guess.

While you expect the apartments to become better over time, you cannot be sure about any apartment

value before visiting it. In particular, each apartment’s value can be up to 5 points below or 5 points above

your expectation with each number in that range being equally likely. For example, for the first apartment,

which you expect to be worth 60 points, the values can range between 55 and 65 points. For the third

apartment, which you expect to be worth 62 points, the values can range between 57 and 67 points, and so

on for the remaining apartments.

To help visualize the value probabilities, imagine that there is a bucket with 11 balls. The balls are labeled

with values, in the -5/+5 range around your expectation. For example, suppose you expect an apartment

to be worth 60 points. Then, the 11 balls would have the following values written on them (one value for

each ball): 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65 Finding out the value of an apartment would then be like

picking one of the balls at random.

Remember that while on average you expect apartments to become better, their true values are uncertain.

This means, you may see a lower apartment value compared to the previous period. In each period the

apartment value will be drawn independently. This means, the value drawn in the current period does not

give you any additional information about the values in the next periods. You can visit as many of the 15

apartments as you want. However each apartment visit will have a cost (as will be discussed on the next

screens).

Apartments visited in the past are still available to you. In other words, when you decide to stop searching

you will receive the highest apartment value that you’ve seen so far. For example, suppose you decide to

stop after visiting three apartments, and their values were 62, 67 and 59. Suppose further that the cost of

visiting one apartment is 1 point. In this case you will earn 67− 3× 1 = 64 points.

How will you choose when to stop searching? In each search period you will be asked the following question:

What is the smallest apartment value that would cause you to stop search? The next apartment value will

then be revealed, and your stated decision to continue (or not) will be implemented:

- if the revealed value is below your stopping value, then you will continue searching.

- if the revealed value is above your stopping value, then you will stop searching.

When you stop searching you will always rent the best apartment you have seen so far.

[Example and quiz screens]
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(a)

 
 
 

(b)

Figure B.1 Technology Adoption: screen shots of the main decision screens. In (a) subjects are deciding to

upgrade (or not) to a new model. In (b) the decision to purchase a new model has been made and subjects are

about to move to the next decision period.
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(a)

 
(b)

Figure B.2 Capacity Allocation: screen shots of the main decision screens. In (a) the subject is choosing the

threshold for accepting/rejecting meals of different value. In (b) the realization of the random meal value and the

acceptance/rejection of that value is displayed, and the subject is about to move to the next decision period.
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(a)

 
(b)

Figure B.3 Product Search: screen shots of the main decision screens. In (a) the subject is choosing the

threshold for the smallest apartment value that would lead her/him to stop searching. In (b) the realization of the

random apartment value and the resulting stop/continue decision are displayed.
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C. Maximum Likelihood Estimation of Policy Usage

In the main text we have used adjusted consistency scores to assign the closest decision rule to each subject

(See Section 5.1 for the description of the method). In this section we use an alternative approach based on

Maximum Likelihood estimation. Specifically we use an adaptation of the Strategy Frequency Estimation

Method (SFEM) proposed by Dal Bó and Fréchette (2011). The construction of the method for the infinitely

repeated Prisoner’s Dilemma game is described in detail in Romero and Rosokha (2018). We modify this

method, so that it can be used with non-binary action spaces, which is the case for some of our tasks.

SFEM is a finite-mixture estimation approach to estimate the proportion of policies used by the experiment

participants. With a discrete action space that contains J decision alternatives, the distance ditk(s) between

the action observed from subject i in period t and state s and the action that would be predicted by policy

k in that state can range between 0 and J − 1, i.e., ditk = 0,1, ..., J − 1. If we denote by Md the matrix that

contains the number of times the distance of size d= 0,1, ..., J−1 was observed for each subject i= 1,2, ...,N ,

and for each policy k = 1,2, ...,K, then we have J − 1 matrices, with each matrix collecting the number of

times each distance was observed in the subject population. Then, the proportion of policies can be estimated

by maximizing the following likelihood expression:

L(ϕ,β) = ln
(
ϕ′ ·P

)
·1,

where the first argument of the likelihood function, ϕ is the vector of proportions that maximize the likelihood

of the choices observed in the data. The second argument of the likelihood function is the vector of population-

average probabilities, β that maximize the joint probability of the observed choices:

P = βM0
0 ◦βM1

1 ◦ · · · ◦βMJ−1

J−1 ,
J−1∑
d=0

βd = 1,

βd ≥ βd+1, d= 0,1, ..., J − 1

where βd denotes the estimate of the population-average probability that a distance of size d is observed, and

◦ denotes element-wise product. The probabilities βd must sum up to 1, and are constrained to be increasing

with the inverse of the distance.

Table C.1 summarizes the bootstrapped estimates for the subset of non-static subjects for the Technology

Adoption and the Capacity Allocation tasks in Study 1. Note that we do not estimate strategies for Product

Search because the majority of subjects are static in Product Search.25 Overall, the results match the

proportions presented in Figure 8. In both tasks optimal strategy is the second-best match, accounting for

about a quarter to a third of non-static subjects. Look-ahead policies are the best fit for most subjects

in Technology Adoption, while the reoptimization heuristic is the best fit for most subjects in Capacity

Allocation. Lastly, note that the sum of the βd parameters is between 0.8 and 0.85 in each column indicating

that collectively, the policies are a good descriptor for our subject population.

25 We cannot use the SFEM method for static subjects because many static subjects essentially use a unique ver-
sion/parametrization of the static policy, i.e., a different static threshold.
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Table C.1 Maximum Likelihood Estimation Results

Technology Adoption Capacity Allocation

Proportion of subjects
matched to policy

ϕOptimal 0.267 0.326
(0.042) (0.068)

ϕLKH1 0.205 0.125
(0.037) (0.082)

ϕLKH2 0.006 0.044
(0.007) (0.030)

ϕLKH3 0.359 0.011
(0.045) (0.015)

ϕBreak−even 0.086 0.118
(0.026) (0.054)

ϕReoptimization 0.076 0.375
(0.021) (0.104)

Population likelihood
parameters

β0 0.809 0.454
(0.008) (0.031)

β1 - 0.391
(0.052)

LL -3843.126 -3816.063

Note. Parameters (estimated shares of subjects following each policy) and standard errors are

reported for 100 bootstrapped samples. The sample includes all non-static subjects. β0 is constrained

to be above 1/2 for Technology Adoption, and above 1/3 for Capacity Allocation.

D. Study 2: Experimental Instructions and Screen Shots

D.1. Experimental instructions: Machine Replacement Problem

This part of the experiment will involve the Car Sale Task. Your goal in this task will be to receive the

maximum possible value out of the car you own. Your car is getting old, and you are starting to get worried

that it might break down. You would like to sell it before that happens (your car will be worthless after a

breakdown), but you would also like to get as much use out of it before selling it. The longer you continue

to drive it, the more likely a breakdown becomes. The game will have several periods. In each period you

will have the opportunity to sell the car.

- If you keep the car, and it does not break down you will get points, and can continue using the car.

- If you keep the car, and it breaks down you will get no additional points, and the game ends.

- If you sell the car you also get points (as will be described later), and the game ends.

As you car gets older, it becomes more and more likely to break down. However, while you expect that the

likelihood of a breakdown increases over time, you cannot be sure when (and whether) it will happen. For



Kagan, Leider & Sahin: Dynamic Decision-making
48 Article submitted to Management Science

example, Suppose the likelihood of a breakdown is 5%, and you decide to keep (not sell) the car. This means

you will be able to keep using the car for at least one more period with probability 95%. To help visualize

the probabilities, imagine that there is a bucket with 20 balls. The balls are labeled either ”Break” or ”No

break”. If the probability of failure is 5%, then 19 balls would have ”No Break” written on them, and one

would be labeled ”Break”. Finding out whether the car has failed, or not, would then be like picking one

of the balls at random (and then returning it to the bucket). Remember that while on average you expect

the probability of a break-down to increase, the timing of a break-down is uncertain. This means, you may

see a break-down relatively early in the game, even though the probabilities of a break-down are low in the

beginning. In each period the break-down can happen independently from the previous periods. This means,

just because your car has not broken down yet, does not mean it will not break down in the next period(s).

If you decide to sell the car, you will no longer be at risk of losing it to a break-down. The points you receive

from selling the car will be added to the usage value you have accumulated so far. Whenever you decide to

sell the car, you will still be able to use it one more time prior to selling. For example, suppose you decide

to sell the car during the 5th period (that is, after using it for 4 periods). Suppose further that you receive

7 points in each period that you use the car, and the sale price is 40. Then, if the car does not break down

in any of the first 4 periods, you will receive 7× 5+40= 75 points.

D.2. Parameters

The parameters were chosen as follows:

- Stopping problem with incremental payoffs

Round 1-2: T = 20, u= 12, S = 32, P = [0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.07,0.07,0.07,0.08,0.09,

0.1,0.11,0.12,0.13,0.14,0.15,0.16,0.16]

Round 3-4: T = 15, u= 7, S = 40, P = [0.01,0.01,0.02,0.02,0.02,0.08,0.08,0.08,0.08,0.09,0.09,0.1,

0.12,0.12,0.13]

- Capacity Allocation task with continuous action space

T = 20, V discrete uniform{1,10}, c= 10, p= 5

- Product Search task with stronger incentives

T = 15, V = [6,8,10,13,16,19,21,21,21,24,24,26,26,26,28], c = 1, value distribution is discrete

uniform around the means, with zero mean and values of {−5,−4,−3,−2,−1,0,1,2,3,4,5}.

- Product Search task with discrete action space

T = 15, V = [60,62,64,66,68,70,72,72,72,74,74,76,76,76,78], c= 1, value distribution is discrete

uniform around the means, with zero mean and values of {−6,−3,0,3,6}.
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(a)  

 
(b)

 

 

(c)

Figure D.1 Screen shots of the main decision screens in Study 2. Panel (a) shows the decision screen in the

Machine Replacement task. Panel (b) shows the action space in in the Product Search task with discrete action

space. Panel (c) shows the action space in the Capacity Allocation task with continuous action space.
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